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1 Paper Overview

1.1 Motivating Example

In hypothesis testing, the multiplicity problem occurs when performing a large number of
hypotheses tests simultaneously. With moderately sized data sets, it might be possible to
gloss over this issue, yet in an era increasingly characterized by massive data sets, this is
no longer possible.

In genetics, DNA microarray experiments are used to gain a better understanding of
the causes and effects of diseases by investigating changes in gene expression for thousands
of genes. In such a microarray experiment, one might easily perform 10, 000 tests. Using
a standard p-value of 0.05, one would expect 500 genes to be deemed significant by chance
even if there was no effect at all.

To correct hypothesis testing procedures under these circumstances, several methods
have been proposed, some based on the concept of the False Discovery Rate (FDR), which
forms the main object of interest for the rest of this summary paper. We start our discussion
by introducing necessary notation and quickly reviewing the classical approaches to deal
with the multiplicity problem. Then, the definition of FDR is introduced and the original
method outlined in1 is explained. Finally, simulation results are presented and points
brought up in the in-class discussion are summarized.

1.2 Definition of Terms

To make precise statements about the problem at hand, we will have to introduce some
notation. Let us denote with H1, . . . ,Hm the m hypotheses we are evaluating. Of these m0

hypotheses are assumed to be true nulls, i.e. hypotheses for which the null hypothesis is
true.

For the i-th hypothesis test, we declare a significant finding if the corresponding test
statistic falls into the rejection region or its p-value pi is smaller than previously set signif-
icance level α. In these cases, we reject hypothesis Hi. Let Ri be the associated indicator
random variable which takes the value one if the i-th hypothesis is rejected and zero oth-
erwise. Then we can define the total number of rejections as R =

∑m
i=1Ri. Besides this

1



True null Non-true null Total

Declared significant V S R

Declared non-significant U T m−R
Total m0 m−m0 m

Table 1: Notation for a setting with m hypothesis tests. Of the defined variables, only
m and R are actually observed, with the rest bing unknown. V is equal the number of
false positives, i.e. the count of how many of the m0 true null hypotheses were erroneously
rejected, whereas R is the total number of significant results out of the m hypotheses.

observed quantity, we define several other unobserved ones, which are all displayed in Table
??. Of these, V is the total number of false positives, hypotheses for which we decide to
reject the null even though it is in fact true. We again define V as the sum of indicator
functions, namely V =

∑m
i=1 Vi, where Vi = 1 if we decide to reject Hi while Ri = 1.

Otherwise, Vi = 0.
Although traditionally much focus in statistics is devoted to control the number of false

positives (Type 1 errors), it is likewise important to be able to detect true effects. We
denote with T the number of committed Type 2 errors (cases for which the null hypotheses
is false but our decision rule does not yield a significant result). The power of a statistical
test is defined as the probability of correctly rejecting a false null hypothesis:

power = P
(
reject null hypothesis

∣∣null hypothesis is false
)

In our reported simulations (where all quantities from Table ?? are known), the power
is estimated as power = S

S+T . Having introduced these quantities, we are ready of a
formal analysis of the multiple testing problem and a discussion of the methods proposed
to alleviate the problem.

Without taking the multiplicity of the testing procedures into account, we would fix
P (Vi = 1) = E [Vi] at level α, which ensures that the probability of committing a type 1
error is equal to α for each hypothesis individually. However, this ignores the multiplicity
problem, as we only control the per-comparison error rate (PCER) and not the family-
wise error rate (FWER), which is defined as the probability of obtaining at least one false
positive: P (V ≥ 1). To see why, observe that the expected number of false positives is

E [V ] =

mo∑
i=1

E [Vi] = m0α ≤ mα,

where the sum is only over all m0 true nulls as Vi is zero automatically for non-true hy-
potheses. Now,

E [V ] = 0P (V = 0) + 1P (V = 1) + 2P (V = 2) + . . .+moP (V = m0)

≥ P (V = 1) + P (V = 2) + . . .+ P (V = m0)

= P (V ≥ 1) ,
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showing that the expected number of false positives provides an upper bound of the FWER.
Alternatively, as V is non-negative, use Markov’s inequality to conclude that P (V ≥ 1) ≤
E [V ].

1.3 Review of Previous Methods

1.3.1 Bonferroni Correction

The results of the previous section suggest an easy fix which allows control of the FWER in
a multiple testing situation. If we pick α? = α

m as the significance level for each individual
test, we get E [V ] = m0α

? ≤ mα? = α and hence we have bounded the FWER at α because
P (V ≥ 1) ≤ α. We say that the Bonferroni correction controls the FWER in the strong
sense as the FWER is bounded at α no matter how many of the underlying hypotheses are
true or false.

One major disadvantage of using the Bonferroni procedure is that it comes with a heavy
price tag, namely a substantial loss in statistical power compared to the per-comparison
testing procedures. The method described next does strictly better in this regard.

1.3.2 Hochberg Procedure

There is an alternative method by Hochberg (1988)2 for controlling the FWER. Given our
set of m hypotheses to be tested, Hi, and their corresponding p-values, pi, we first sort them
to obtain the ordered p-values p(1) ≥ p(2) ≥ · · · ≥ p(m). We then determine the largest k
such that:

p(k) ≤ α

m− k + 1

If we then reject the hypotheses H(j) for each j ≤ k, it turns out that we will still have
P (V ≥ 1) ≤ α. This statement holds no matter how many of the null hypotheses are
actually true. This procedure rejects strictly more of the hypotheses being tested than the
bonferroni procedure in every case except when only a single hypothesis is rejected, and
thus has a gain in power. This can be seen by noting that α/m < α/m− k + 1 for all k > 1.
However, in practice, the gain in power is relatively small.

1.4 False Discovery Rate

The two methods above show that it is possible to control the FWER, but that it’s hard to
do this and retain much power. In some situations, guaranteeing a low chance of making
any errors about the true nulls isn’t as important. For instance, when you are testing for
multiple positive outcomes from a single drug. If a single one of your detected outcomes
turns out to be false, this isn’t a huge penalty as long as some of the null hypotheses are
false. Thus, it makes sense to instead control the percentage of discoveries that were actually
null. Formally we will control:

Qe = E[Q] = E[V/R]

We also adopt the convention that if R = 0, and thus there are no significant discoveries,
that Q = 0. If it is possible to gain power while still controlling the FDR, this would be
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advantageous in many common scenarios. The main theorem of this paper shows that it
is in fact possible to control the False Discovery Rate (FDR) at some level q by using a
procedure similar to the Hochberg procedure above. Again, we consider the sorted p-values
and find the largest k such that:

p(k) ≤ k

m
q

We then reject all ordered hypotheses with j ≤ k. It turns out that this method does
control the FWER when all of the null hypotheses are true, but has no guarantee when
m0 < m. The theorem does, however, require that the p-values under the null hypothesis
are independent and uniformly distributed between zero and one. The theorem places no
requirements, however, on the p-values under the alternative hypotheses, and is proven by
the following lemma.

Lemma. For any 0 ≤ m0 ≤ m independent p-values corresponding to true null hypothe-
ses, and for any values the m1 = m −m0 p-values corresponding to false null hypotheses
can take, the multiple-testing procedure above satisfies:

E(Q|Pm0+1 = p1, .., Pm = pm1) ≤ m0

m
q.

Then, no matter what the distribution is over the false null hypotheses, we can integrate
over their joint distribution to obtain the bound:

E(Q) ≤ m0

m
q ≤ q.

Thus, our bound is tightest when all null hypotheses are true. To see that we are gaining
in power, even over the Hochberg procedure, notice that we now have 1

m−k+1 ≤
k
m for all

k. It turns out that the inequality is strict for all k away from k = m and k = 1. To see
this difference graphically consider figure 1. The gap between the rejection criterion can be
quite large, and so it’s not surprising that in practice a large gain in power can be seen.

2 Examples

2.1 Shiny App

We have developed a Shiny application to illustrate the properties of the FDR and other
classical procedures like Bonferroni on simulated data. The application can be accessed
under the following URL: https://philipp.shinyapps.io/FalseDiscoveryRate/. Using
a simple GUI, it is possible to vary the parameters of the simulation: The number of
hypotheses can be set, the percentage of true nulls as well as the maximal true effect under
the alternative hypothesis, µmax

1 . Data are drawn from N(0, 1) under the null and N(µi, 1)
under the alternative hypothesis of µi 6= 0, where µi is a value between zero and the chosen
maximal true effect. To be more precise, the non-zero expectations were binned into three
groups at values 1

4µ
max
1 , 1

2µ
max
1 , 3

4µ
max
1 , and µmax

1 , where the number of hypotheses in each
bin is either equal, linearly decreasing or linearly increasing. This setting is almost identical
to the simulation experiment described in.1

Results show that both the Hochberg method and the Bonferroni procedure take a big
hit in terms of power when compared with the naive method of discounting the multiplicity
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Figure 1: Multiplicative factor for Hochberg and FDR procedures

problem and the FDR procedure. However, the naive method does very poorly when
evaluated in terms of the FWER: With as few as 50 simultaneous hypotheses, it is quite
likely to obtain a FWER around 0.75 in this case.

2.2 Ryan’s Example

This simulation study (code available on the course website) by Ryan Tibshirani demon-
strates the effect of using different kind of pre-screening procedures before hypothesis testing
using FDR. Throwing away observations is often not a good idea, but one reason might be
the need to decrease the number of comparisons and thus increase the power of the testing
procedure.

In the example provided by Ryan Tibshirani, we measure m genes for n healthy and n
sick patients, with the question to identify the genes which are associated with the patients
being either sick or healthy. Assume that for each gene i, Xij measures the gene expression
level for the j-th healthy person. We assume that the gene expression levels of gene i for
the n healthy persons are independently drawn from a normal distribution

Xi1, . . . , Xin ∼ N
(
µi, σ

2
)
,

and likewise that for the n sick persons, we have that

Yi1, . . . , Yin ∼ N
(
θi, σ

2
)
.

The hypotheses in question are Hi : µi = θi, which are tested against the alternative that
the expression level of gene i differs among the sick and healthy. Two screening procedures
are considered: The first one being based on BVi =

(
X̄i − Ȳi

)2
, where X̄i = 1

n

∑n
j=1Xij
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and Ȳi =
∑n

j=1 Yij . Using this procedure, we only keep the half of the observations with the
highest BVi score and discard all others. The second screening procedure is based on the

total variance: TVi = 1
2n

(∑n
j=1(Xij −Mi)

2 +
∑n

j=1 (Yij −Mi)
2
)

, where Mi is the mean

of the joint sample X1, . . . , Xn, Y1, . . . , Yn. Figure 2 shows the estimated and true FDRs
under both screening regimes.
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Figure 2: Estimated versus true FDR under different screening procedures.

As we can see, for the situation without screening and screening based on the total
variance, the red and blue line lie which correspond to results obtained by the Benjamini-
Hochberg procedure and a permutation test roughly lie on the 45-degree line, suggesting
agreement between the true and estimated FDR. However, when basing the screening on
BVi, the result looks strikingly different: One heavily underestimates the true FDR in this
case.

What is going on here?
Note that our inference results after screening will only continue to be valid if the

screening procedure does not alter the distribution of the test statistics and consequently
the p-values. As shown in the supplementary note of Ryan Tibshirani, this is the case for
TVi but not for BVi. The main takeaway from this is that if one decides to pre-screen
observations, one should decide upon a screening criterion which is independent of the test
statistic.

2.3 Mean Comparison Example (Beau)

One multiple testing problem that is relatively common is the comparison of means. Suppose
we have n variables Y1, ..., Yn each with mean µi and common variance known to be σ2 = 1.
Since each variable is used in multiple tests, this means that there will be dependence
between the tests. We considered one simulation in class where we had 8 variables generated
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Figure 3: Power, FWER, and FDR curves for comparison of 8 means. All tests were at level
α = q = 0.05. The solid blue line represents the 0.05 level in both plots, and the dashed
blue line represesnts 0.05
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from a normal distribution with:

µ1 = µ2 = L ; µ3 = µ4 = 2L ; µ5 = µ6 = 3L ; µ7 = µ8 = 4L

Thus we have 28 tests of difference of mean, 4 of which are true under the null hypothesis
of no difference. Figure 2.3 shows the resulting power, FWER, and FDR rates as we vary
the magnitude L. In this simulation our procedures do provide the correct guarantees. One
thing to note is that the bonferroni procedure actually controls the familywise error rate
at α · m0

m which in our case happens to be α
7 . Since the bonferonni correction makes no

assumptions about independence, it’s not surprising that it is still controlled at the correct
rate when we know the proportion of true hypotheses. Similarly the FDR procedure should
actually control the FDR at level q

7 and this control appears to be fairly tight. The reason
that we still have control despite dependence among some of the p-values is that the null
hypotheses actually are independent, even though some of the tests that have false null
hypotheses are dependent.

After the class discussion we did a further simulation with 3 levels for the means, L, 2L,
and 3L. We had three variables for each level resulting in 9 variables total. This new test
induces dependence among the null hypotheses as well. Figure 2.3 shows the results for
this new simulation. Again we also plotted the 0.05 and 0.05 · m0

m levels for the FWER and
FDR. The bonferroni procedure still controls the FWER at the expected level, while our
FDR procedure also controls the FDR at the expected level, despite the dependence.

3 Discussion

3.1 Balancing sample size and FDR

During the discussion, Rob Tibshirani gave offered some suggestions for usage of the FDR in
practice. Instead of picking a single q in the Benjamini-Hochberg procedure, he advocated
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Figure 4: Power, FWER, and FDR curves for comparison of 9 means. All tests were at level
α = q = 0.05. The solid blue line represents the 0.05 level in both plots, and the dashed
blue line represesnts 0.05
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varying it and obtaining a range of results, differing in the number of rejected and kept
hypotheses. Based on the research question or domain knowledge of the researchers, one
can then decide upon which of the results is deemed most reasonable.

3.2 Alternate Versions of FDR

A few alternate version of FDR exist, one of the most common ones is the positive false
discovery rate (pFDR) which can be found in the Benjamini, Hochberg paper1 and is elab-
orated on in the paper by Storey (2002).3 This is simply the expected false discovery rate
conditional upon rejecting at least one hypothesis,

pFDR = E(V/R|R > 0)

For a small number of hypotheses this difference could be important, but in general this
difference is inconsequential. If we consider our rejection region to be a set of p-values of
the form [0, γ], which is the form of most rejection procedures, it turns out that we can
represent the pFDR of a procedure with rejection level γ as,

pFDR(γ) =
π0Pr(P ≤ γ|H = 0)

Pr(P ≤ γ)
=

π0γ

Pr(P ≤ γ)
,

where π0 = m0/m. The only difficulty with this formula is that we need to estimate π0 and
Pr(P ≤ γ). However it turns out a decent estimate of the number of null hypotheses in the
sample is the number of p-values in the tail of the distribution, divided by the width of the
tail,

m̂0(λ) =
#{pi > λ}

(1− λ)
=

W (λ)

(1− λ)

Giving us an estimate for π̂(λ) = m̂0(λ)/m. Similarly we can estimate the probaiblity of a
p-value being less than γ by our observed proportion R(γ)/m. These two estimates give us
a relatively simple formula for pFDR as a function of λ and γ,

Q̂λ(γ) =
W (λ)γ

(1− λ)R(γ)
.
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