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1 Introduction

For 53 forest sites in Colombia and Ecuador, data was collected about the structure of the forest
(Phillips, 2002). Besides the total number of plants, a breakdown of the composition of the plants
was collected: It was recorded how many of them were ordinary Trees, and how many Lianas and
Hemiepiphytes had been found. Hemiepiphytes are a type of epiphytes which grow upon other
plants but develop roots over the course of their life, whereas Lianas grow from the ground but
climb up on trees in order to reach the parts of the forest canopy which are well-lit (Britannica,
2006). There is an intense tree-liana competition, as studied e.g. by Ingwell et al. (2010) in a long-
time study spanning 10 years. Research questions about the factors influencing the structure of
forests are abundant in ecology, with one question centering on the proportion of lianas in tropical
vs. temperate forests (Phillips, 2002). For example, it can be observed that dry forests generally
have a higher proportion of lianas than forests with higher rainfall, see Swaine and Grace (2007)
for a detailed study.

In analyzing our data set, we try to investigate whether the forest sites in Colombia and Ecuador
conform to these laws or diverge from them. Specifically, we want to investigate how forest
structure varies with the two variables Rainfall (in mm/year) and Elevation (in meters above sea
level), which have been collected for each forest site. We start our analysis with an exploratory
data analysis in Section 2. A multinomial logit model is proposed in Section 3 and the results from
fitting this model are presented in Section 4. In Section 5, a Bayesian analysis is presented as an
addition to the frequentist approach. The results are then compared with the previously obtained
ones and the mixing of the chain is assessed. In Section 6, the results are summarized and potential
for future research is discussed.

2 Exploratory Analysis
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Figure 1: Histograms for explanatory variables Rainfall and Elevation
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Figure 2: Scatterplot of the annual rainfall against the total number of plants

First, we examined whether the data set contained missing values or exhibited other properties
one would need to deal with before conducting any statistical analysis. In general, the data set is
well formatted, requiring only minor pre-processing from our part. One observation (row index
41) has missing values for both Lianas and Hemiepiphytes. It is obvious, however, that they must
correspond to zero values, as the total number of plants and the amount of trees coincide for this
observation. It was recoded accordingly.

Recall that for each forest site, the values for two possible factors which shape forest structure
were recorded. In Figure 1, their empirical distributions are displayed as a histogram. As one
can see, the respective forest sites vary considerably with respect to these characteristics. Most of
them are fairly dry, but there are a few places with annual Rainfall higher than 6000mm, which
could even be called rain-forests. Elevation is distributed in the range of 0 − 4000, without any
extreme observations. In return, the distribution of Elevation is highly right-skewed, with most
observations having values on the lower end of the spectrum.

Indeed, the considered forest sites differ both in terms of weather conditions and position from
each other. But how do these different characteristics affect the flora of the forests? One quite
obvious relationship is that more rainfall is generally associated with a larger amount of plants, as
can be seen in the scatterplot of Figure 2: The superimposed regression line shows a clear linear
trend. It must be noted that it would be even steeper if the two observations with very high rainfall
did not exist.

Visualizing the relationships between the composition of the forest and the features of the forest
site is a much more complicated task, though. In fact, one of the main reasons why one should
favour a statistical modelling approach in this context is that it facilitates comprehension. Before
turning to that task, a look at Figure 3 might notwithstanding clarify some patterns. First notice
that the previously detected relationship between rainfall and the total number of trees is also
visible here: The bars further down in the plot are for the most part shorter than the ones at the top.
Also, we can see that the trees are the most common plant group. In fact, 80% of all counted plants
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Figure 3: Plot of forest composition for all 53 forest sites. The length of the
horizontal bars corresponds to the number of plants in the respective forest,
with the colors denoting to which proportion this number is made up of Trees,
Lianas and Hemiepiphytes. The forest sites have been sorted by their annual
rainfall in descending order. The elevations of the forest sites are mapped to
the alpha colors of the bars.
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had been trees. The Lianas are the next common plant species, whereas Hemiepiphytes represent
the rarest of the species (only 3.5% of the plants belong to this group). Another interesting pattern
is that Lianas seem to compete with Hemiepiphytes: In most bars, there is either a larger blue or a
larger green part. The combination is not encountered often. Concerning the impact of Elevation,
the plot is not very insightful: There does not seem to be any difference in forest composition
depending on how transparent the respective bar is. In the following, we investigate whether this
impression is deceptive by applying statistical modelling.

3 Multinomial Regression

The logistic regression framework for binary outcomes can easily be extended to deal with re-
sponse variables with more than two categories. These generalisations are then called multi-
category or multinomial models. They assume that response variable Y follows a multinomial
distribution, i.e.

Yi ∼ multinomial(πi, Ni),

where Ni denotes the total number of counts for the i-th observation and πi is the vector of class
probabilities with length J , the number of different classes.

The most common function which is used to link πi to the linear predictor is the logit link, which
yields the multicategory logit model. Agresti (1990) points out that in this model, the log odds for
all pairs of categories can be described by only J − 1 log-odds equations, although there exist

(
J
2

)
of them.

Usually, the most common category is defined as the baseline. With Trees as the baseline category,
the two logit equations determining the model can be written as

log
πi2
πi1

= ηi2 = β20 + β21 · Ri + β22 · Ei + β23 · REi

log
πi3
πi1

= ηi3 = β30 + β31 · Ri + β32 · Ei + β33 · REi

(1)

where the two linear predictors ηi2 and ηi3 are related to the class probabilities πik via the gener-
alized logit link function and Ri is the annual rainfall of the i-th observation, Ei the elevation and
REi an interaction term between the two variables. For the i-th individual, πik gives the probabil-
ity of belonging to class k, where we define k = 2 to denote Lianas and k = 3 as Hemiepiphytes.
To see why the specification of those two equations suffices, notice that the log-odds between
classes Lianas and Hemiepiphytes can be calculated as

log
πi2
πi3

= log
πi2
πi1
−log πi3

πi1
= (β20 − β30)+(β21 − β31)·Ri+(β22 − β32)·Ei+(β23 − β33)·REi

Before carrying out the regression, we change the measurement units of Rainfall from mm to
meters and for Elevation from meters to km. This helps to make the regression coefficients more
interpretable, as they otherwise take exceedingly small values.
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4 Results

The estimated coefficients for Equation (1) are displayed in Table 1. In a multicategory logit
model, interpreting the regression coefficients becomes increasingly cumbersome the more re-
gressors the model contains and the more classes the response variable has. Yet, we can already
note that all regressors exert a significant effect on the respective log-odds, with one exception:
Elevation does not appear to influence the logarithm of the odds of belonging to Hemiepiphytes
compared to Trees. Yet, our main interest in not on the effects on the odds but rather how the class
proportions themselves change by varying the regressors. To calculate class probabilities, recall
that we have

πij =
exp (βj0 + βj1 · Ri + βj2 · Ei + βj3 · REi)

4∑
h=1

exp (βh0 + βh1 · Ri + βh2 · Ei + βh3 · REi)

, (2)

where the baseline coefficients are assumed to be β10 = β11 = β12 = β13 = 0. To see why
this equation holds, notice that we have πij = exp (ηij)πi1 from Equation (1). Summing over all

values of j and rearranging, one obtains πi1 = 1/
J∑

j=1
exp (ηij). Back-substitution then yields the

general formula displayed in Equation (2).

Using this result, it is possible to calculate the estimated class proportions for any possible com-
bination of the predictor values. One possibility to visualize the dependency of the estimated
probabilities on the regressors is the type of plot depicted in 4, which was originally devised by
Fox (2009).

Estimate Std. Error z value Pr(>|z|)
Lianas:(Intercept) -0.888 0.054 -16.571 0.000

Lianas:Rainfall -0.195 0.017 -11.286 0.000
Lianas:Elevation -0.345 0.045 -7.713 0.000

Lianas:Rainfall:Elevation 0.061 0.016 3.859 0.000
Hemiepiphytes:(Intercept) -3.271 0.108 -30.151 0.000

Hemiepiphytes:Rainfall 0.038 0.026 1.452 0.147
Hemiepiphytes:Elevation -0.316 0.092 -3.458 0.001

Hemiepiphytes:Rainfall:Elevation 0.122 0.027 4.503 0.000

Table 1: Regression output for the multicategory logit model specified in
Equation (1)

As we can see from the plot, there are some interesting things going on here: Firstly, for all forest
sites with moderate rainfall (the first two plots from the left), a higher elevation is associated with
a larger proportion of trees, with the effect most pronounced for the very dry forests where the
estimated tree proportions rise from around 70% to over 80%. The pattern for the rain-forests
is quite different: Here, a larger amount of Elevation is associated with an increase of Hemiepi-
phytes, which comes at the expense of trees and lianas: their combined proportion diminishes to
roughly 90% for a forest site with an elevation of 3km and annual rainfall of 4, 500 mm. The
three considered values for Rainfall (1.5, 2.5 and 4.5) were chosen with the goal in mind that class
probabilities should only be predicted for predictor values which are quite common in the data set
at hand and do not constitute extreme cases.
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Figure 4: Stacked-area display for the effect of Elevation on forest compo-
sition at different levels of Rainfall. The different plots correspond to forests
with annual rainfall of 1.5, 2.5 and 4.5 meters.
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Figure 5: For all classes, the observed class proportions are plotted against
the fitted values obtained from Equation (2). For a perfect fit, all data points
would be located on the 45° line.

4.1 Diagnostics

The residual deviance of the model is overwhelmingly large (21, 989). However, this does not
indicate a bad fit, as this statistic is calculated by comparing the fit of the model to a saturated
model which correctly predicts every individual plant and not each multinomial cell. To assess the
goodness-of-fit, we instead compare the estimated with the empirical class frequencies. The plots
in Figure 5 indicate that the model fits the proportions of the Hemiepiphytes and the Lianas quite
poorly, with the tree predictions being on track most of the time. One way to improve model fit
would be to collect more data points. Since this is not an option for us, we instead run a Bayesian
analysis and compare the results.

5 Bayesian Analysis

5.1 Model Specification

In the Bayesian formulation of the regression problem, prior distributions have to be assigned to
the regression coefficients. Posterior distributions are then found for the parameters by applying
Bayes rule. Such an approach is not without its pitfalls, since the results can heavily depend on
the chosen priors (e.g. the posterior will only have non-zero density on the support of the prior).
A substantial but nonetheless fair critique of Bayesian inference is given by Cox (2007). For a
comparison of Bayesian and frequentist inference, see Bickel (2012).

Since we do not possess information about effect sizes of rainfall and elevation (mainly due to
a lack of knowledge in ecology), an objective Bayes approach was implemented by using non-
informative priors. Specifically, the regression coefficients were assigned a multivariate normal
distribution with mean zero and the identity matrix serving as the variance-covariance matrix. In
preparing the model for R package rjags, we adapted a code snippet provided by Ntzoufras (2009).
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Figure 6: Posterior density plots for the regression coefficients in Equation
(1) as obtained from performing MCMC

Figure 6 displays posterior densities for the parameters which were obtained by initializing a
Markov Chain Monte Carlo (MCMC) algorithm.

Notice that the obtained point estimates are almost equal to the previously calculated estimates
depicted in Table 1. This lends credibility to the outcomes of the frequentist model fitting result.
Without any other data at hand which could influence model choice, we can conclude that the
presently implemented model captures the relationships among the different variables adequately.
To obtain better prediction results, one would need to either use a larger sample for model fitting
or incorporate subject knowledge into the analysis.

5.2 Convergence Diagnostics

The posterior densities depicted in Figure 6 were obtained by initializing three Markov chains
each running for 1, 000, 000 iterations. For this purpose, the general-purpose Gibbs sampler im-
plemented in R package rjags was used. A burn-in period of 10, 000 iterations was specified to
limit the amount of samples which are drawn from a low-density region of the chain. In the limit,
it does not make a difference at what point the chain was initialized. However, we are averaging
a finite number of samples to obtain the estimates of the regression coefficients. To prevent that
samples from a low-probability region are over-represented, it is advisable to specify a burn-in
period in order to get rid of observations dependent on the starting values. Finally, we specified a
thinning factor of 100 to reduce the amount of data which needs to be recorded. Trace plots of the
obtained samples are displayed in Figure 7. It appears that all chains have converged in the sense
that the empirical distribution of the MCMC samples reasonably approximates the target distri-
bution. Statistical tests did not indicate lack of convergence either: The potential scale reduction
factor of Brooks and Gelman (1998) is one for all parameters, as required.
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Figure 7: Trace plots for the estimated regression coefficients.

10



6 Conclusion

Using several visualization techniques, we investigated the structural differences among forest
sites in Colombia and Ecuador. Equipped with information about the annual rainfall and the
elevation of each site, we studied how these factors influence the amount of Trees, Lianas and
Hemiepiphytes at each forest site. Visualization alone has proven to be insufficient here, and
therefore we resorted to statistical modelling techniques.

We employed a multinomial logit regression model, using both fixed effects and an interaction
term as regressors. This was implemented both using a frequentist and a Bayesian framework.
The obtained results have been almost identical, reaffirming the notion that both approaches to
inference yield in the limit the same results.

The present analysis could be extended by incorporating subject knowledge into the analysis and
collecting more plant data to allow a more detailed description of forest structure.
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Appendix

R Code
set.seed(1215) # for reproducibility

# use of knitr (Sweave
# successor) to create this
# report
opts_chunk$set(fig.align = "center",

cache = FALSE, message = FALSE,
background = "white", echo = FALSE,
eval = TRUE)

options(replace.assign = TRUE,
width = 85)

Plants <- read.csv(file = "plants.csv")

# clean data set replace NA
# with zero for obs 41
Plants[41, 5:6] <- 0

Props <- Plants[, c("Trees", "Lianas",
"Hemiepiphytes")]/Plants$Total

Props[is.na(Props)] <- 0
p <- ggplot(aes(x = Rainfall),

data = Plants) + geom_histogram(binwidth = 2000,
fill = "white", color = "black")

q <- ggplot(aes(x = Elevation),
data = Plants) + geom_histogram(binwidth = 1000,
fill = "white", color = "black")

grid.arrange(p, q, ncol = 2)
# more rainfall, more total
# plants
ggplot(Plants, aes(x = Rainfall,

y = Total)) + geom_point() +
stat_smooth(method = "lm")

df1 <- Plants
df1$Site <- reorder(df1$Site, df1$Rainfall)
df1.melted <- melt(df1, measure.vars = c("Trees",

"Lianas", "Hemiepiphytes"))
colnames(df1.melted)[5] <- "Type"

p <- ggplot(df1.melted, aes(x = Site,
y = value, fill = Type, alpha = Elevation)) +
geom_bar(stat = "identity") +
coord_flip() + theme(legend.position = "bottom")

p

Species <- with(data = Plants,
cbind(Trees, Lianas, Hemiepiphytes))

Plants$Elevation <- Plants$Elevation/1000
Plants$Rainfall <- Plants$Rainfall/1000

multinom.fit <- multinom(Species ~
Rainfall * Elevation, data = Plants)

multinom.fit$lev <- c("Trees",
"Lianas", "Hemiepiphytes")

library(AER)
xtable(coeftest(multinom.fit),

digits = 3, label = "tab:RegOutput",
caption = paste0("Regression output for the multicategory ",

"logit model specified in Equation (\\ref{eqmultinom})"))
plot(effect("Rainfall*Elevation",

multinom.fit, xlevels = list(Rainfall = c(1.5,
2.5, 4.5))), style = "stacked",

rug = FALSE, par.strip.text = list(cex = 0.8),
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xlab = list(fontsize = 10,
label = "Elevation"), ylab = list(fontsize = 10,
label = "Species (Proportion)"))

Fitted <- fitted(multinom.fit)

p <- qplot(Props[, 1], Fitted[,
1]) + geom_point() + labs(x = "Observed",
y = "Fitted", title = colnames(Fitted)[1]) +
geom_abline(intercept = 0,

slope = 1) + xlim(c(0.6,
1)) + ylim(c(0.6, 1))

q <- qplot(Props[, 2], Fitted[,
2]) + geom_point() + labs(x = "Observed",
y = "Fitted", title = colnames(Fitted)[2]) +
geom_abline(intercept = 0,

slope = 1) + xlim(c(0,
0.5)) + ylim(c(0, 0.5))

r <- qplot(Props[, 3], Fitted[,
3]) + geom_point() + labs(x = "Observed",
y = "Fitted", title = colnames(Fitted)[3]) +
geom_abline(intercept = 0,

slope = 1) + xlim(c(0,
0.2)) + ylim(c(0, 0.2))

grid.arrange(p, q, r, nrow = 1)
InteractionTerm <- Plants$Rainfall *

Plants$Elevation
jagsData <- list(y = Species, x1 = Plants$Rainfall,

n = 53, K = 3, b0 = c(-1, 0,
0, 0), N = Plants$Total,

B0 = diag(1e-04, 4), x2 = Plants$Elevation,
x3 = InteractionTerm)

my.mult <- jags.model(file = "bayesian.jags",
n.chains = 3, n.adapt = 10000,
data = jagsData)

codaSamples <- coda.samples(my.mult,
variable.names = c("beta"),
n.iter = 1e+06, thin = 100)

save(list = "codaSamples", file = "jagsResults.RData")
load(file = "jagsResults.RData")
mat.samples <- as.matrix(codaSamples)

## function from John Kruschke:
HDIofMCMC <- function(sampleVec,

credMass = 0.95) {
# Computes highest density
# interval from a sample of
# representative values,
# estimated as shortest
# credible interval.
# Arguments: sampleVec is a
# vector of representative
# values from a probability
# distribution. credMass is a
# scalar between 0 and 1,
# indicating the mass within
# the credible interval that is
# to be estimated. Value:
# HDIlim is a vector containing
# the limits of the HDI
sortedPts <- sort(sampleVec)
ciIdxInc <- floor(credMass *

length(sortedPts))
nCIs <- length(sortedPts) -

ciIdxInc
ciWidth <- rep(0, nCIs)
for (i in 1:nCIs) {

ciWidth[i] <- sortedPts[i +
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ciIdxInc] - sortedPts[i]
}
HDImin <- sortedPts[which.min(ciWidth)]
HDImax <- sortedPts[which.min(ciWidth) +

ciIdxInc]
HDIlim <- c(HDImin, HDImax)
return(HDIlim)

}
## custom function to produce
## posterior density plots

plotPosterior <- function(vector,
param.name = "vector", showHDI = TRUE) {
HDI <- HDIofMCMC(vector)
mysize <- 6
if (showHDI == TRUE) {

r <- qplot(vector, geom = "blank") +
geom_histogram(aes(x = vector,

y = ..density..),
fill = "#87CEEB",
col = "steelblue") +

theme_gray(base_size = 12) +
geom_density(col = "#87CEEB",

lty = 2, lwd = 1) +
labs(x = param.name) +
geom_segment(aes(x = HDI[1],

y = 0, xend = HDI[2],
yend = 0), lwd = 1) +

geom_text(aes(x = HDI,
y = 0, label = as.character(round(HDI,

digits = 2)),
vjust = -1, size = 6)) +

geom_text(aes(x = mean(HDI),
y = 0, label = "HDI",
size = 6), vjust = -1) +

geom_text(aes(x = mean(vector),
y = max(density(vector)$y),
vjust = 3, hjust = -0.1,
label = paste("mean:",

as.character(round(mean(HDI),
digits = 2))),

size = 6)) + theme(legend.position = "none")
return(r)

} else {
r <- qplot(vector, geom = "blank") +

geom_histogram(aes(x = vector,
y = ..density..),
fill = "#87CEEB",
col = "white") +

theme_bw(base_size = 12) +
geom_density(col = "#87CEEB",

lty = 2, lwd = 1) +
labs(x = param.name) +
geom_text(aes(x = mean(vector),

y = max(density(vector)$y),
vjust = 3, hjust = -0.3,
label = paste("mean:",

as.character(round(mean(HDI),
digits = 2))),

size = 6)) + theme(legend.position = "none")
return(r)

}
}
coef.names <- paste("beta[", rep(c(2,

3), each = 3), rep(0:3, times = 2),
"]", sep = "")

coef.names2 <- lapply(coef.names,
function(x) parse(text = x))

p <- plotPosterior(mat.samples[,
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5], param.name = coef.names2[[1]])
q <- plotPosterior(mat.samples[,

6], param.name = coef.names2[[2]])
r <- plotPosterior(mat.samples[,

7], param.name = coef.names2[[3]])
s <- plotPosterior(mat.samples[,

8], param.name = coef.names2[[4]])
t <- plotPosterior(mat.samples[,

9], param.name = coef.names2[[5]])
u <- plotPosterior(mat.samples[,

10], param.name = coef.names2[[6]])
v <- plotPosterior(mat.samples[,

11], param.name = coef.names2[[7]])
w <- plotPosterior(mat.samples[,

12], param.name = coef.names2[[8]])
grid.arrange(p, q, r, s, t, u,

v, w, ncol = 4, nrow = 2)
theme_set(theme_gray(base_size = 11))

# remove baseline
codaSamples2 <- lapply(codaSamples,

function(x) as.matrix(x))
codaSamples2 <- lapply(codaSamples2,

function(x) x[, -(1:4)])

# reshape for plotting
codaSamples.melted <- lapply(codaSamples2,

melt)
codaSamples.melted <- lapply(codaSamples.melted,

function(x) x[, -1])
codaSamples.melted <- melt(codaSamples.melted)

df4 <- data.frame(Iteration = rep(1:10000,
24), value = codaSamples.melted$value,
chain = codaSamples.melted$L1,
coefficient = codaSamples.melted$Var2)

df4$chain <- as.factor(df4$chain)
df4$coefficient <- factor(df4$coefficient,

labels = coef.names)

ggplot(aes(x = Iteration, y = value,
group = chain, col = chain),
data = df4) + geom_line() +
facet_grid(facets = coefficient ~

., scales = "free_y")

## Gelman Diag:
## gelman.diag(lapply(codaSamples,
## function(x) x[,-(1:4)]))
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