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1 Introduction

It is easy to see that the price a certain residential property is sold at is determined by different
factors: The size of the building, the number of bedrooms, but also external factors like the quality
of the neighborhood, whether it is located in a popular town or on the countryside. All these play
a major role in determining the final house price. As the recent housing bubble in the U.S. has
shown, cyclical behaviour is also an influencing factor. For an analysis of the macroeconomic
forces driving the housing market, see Tsatsaronis and Zhu (2004). To this day, the exact interplay
between all these factors remains obscure, though.

In the present analysis, we use information about the sales prices of residential property from a
single town. The data set was obtained from a States Assessor’s Office and comprises information
about 444 individual residential properties sold in the time period from 1879 to 2010. Besides our
variable of interest, the price of the house in U.S. dollars, the set of collected features contains:
garage, the number of car spaces in the garage (0-4), the number of working fireplaces in the
property, the area of the property (measured in square feet) and the year in which the building was
completed. All variables are treated as numeric. Although the values of garages and fireplaces
are discrete-valued and their influence on the response is not entirely linear, we don’t treat them as
categorical. Our reasons are two-fold: Firstly, we do not want an bloated set of predictors, which
would be the consequence of the inclusion of dummy variables for factors. Secondly, if they were
treated as categorical, there would be very few observations for some levels of the factors, giving
unreliable results of effect sizes.

Using standard linear modelling techniques, our goal is to devise a model which enables prediction
of sales prices given the set of explanatory variables. Predicting housing prices is a standard
example in the machine learning and statistical literature, and many different methods have been
used in this context (see Hotel and June (2004) for a study using neural networks).

Our reasoning for using linear modelling is that it may allow the researcher to gain a deeper
understanding of the relationships between the variables, which is in stark contrast to many black-
box methods like neural networks (Hastie et al., 2009).

The rest of the paper is organized as follows: In Section 2, we conduct an exploratory analysis
and perform outlier detection. The used methodology for model fitting and model selection is pre-
sented in Section 3. Section 4 discloses the obtained results. The adequacy of the final model is
investigated in Section 5 by residual diagnostics and other model checking practices. An alterna-
tive modelling approach using resistant regression is presented in Section 6. Section 7 concludes.

2 Data Exploration and Cleaning

Common sense tells us that the area size of a property will be positively correlated with the realized
price of sale. But is this connection valid for all observations, or are there some properties which
are e.g. so large that they must be even sold at a lower price in order to balance the enormous
upkeep costs?

In the U.S., housing prices have risen roughly 2% per year over the last decades (Glaeser et al.,
2005). Having this in mind, one would expect that the year a house had been built was positively
correlated with its price. Is this really the case, or are there so many enthusiasts for old buildings
as to inflate prices?
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Figure 1: 3d scatterplot with dependent variable price on the z-axis and
numeric predictors year and area on the x and y-axis. The count of garages is
mapped to the color of the scatter points, with red standing for three garages,
green for two and magenta indicating one garage. The rare cases of no
garage or four garages are colored in blue and orange, respectively.

To shed some light on these questions, Figure 1 presents a 3d scatterplot of the three variables.
Furthermore, garage was mapped to the color attribute of the points. First, it is noticeable that a
later year is indeed associated with a higher sales price. If one looks at the marginal distribution of
price against year, this pattern will become even more obvious. In linear modelling, the question
of model choice is of utmost importance. One decision which needs to be made is whether it
is necessary to include higher-order terms of the predictors. A simple linear regression of the
sales prices on a cubic polynomial of year shows that the terms for all three degrees are clearly
significant (p-values < 0.001). By including all of them in the set of potential covariates, we
achieve two goals: We do not prohibit variables which have a significant influence to be part of
the final regression equation and we also permit year to have not only a monotonic increasing, but
also a potentially decreasing influence. This might become a desirable feature as more data comes
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in and the model is updated, since the astronomic prices which had been realized for new property
during the housing bubble have likely fallen.

From the colored cluster, we can further deduce that in recent years there had been a trend towards
larger garages: While building built in the 1920s to 1950s generally possess garages with only one
parking spot, contemporary buildings are equipped with garages in which two or even three cars
fit in.

Although not clearly noticeable from the 3d scatterplot, area is indeed positively affecting the sales
price. This can be best seen by looking at the marginal distribution which is depicted in Figure
2. The point cloud clearly exhibits an upward trend, which is reflected by the blue regression line
which features a positive slope.
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Figure 2: On the left-hand side, a scatterplot of area against price is dis-
played. Superimposed are regression lines from a simple regression of price
on area and a second-order polynomial regression. The right-hand side
shows the same plot after the three outliers in the lower-right corner were
removed.

The red regression curve on the plot of the left-hand side in Figure 2 could make us believe that
it is necessary to include a higher-order term for area: The parabola is nowhere near the ordinary
regression line, indicating that the second-order term exerts a major influence. And while this is
indeed true, this behaviour is almost exclusively determined by the three extreme points in the
lower-right corner (they have indices 343, 438 and 443). If they were removed, the regression
lines look all of a sudden very similar. Naturally, the question arises what to do with the outliers.
If we leave them untouched, the results of standard linear modelling using OLS will be severely
influenced by them.

To decide how to proceed, we must check whether no measurement error is present and assess
how likely it is that they stem from the same population as the other observations. Concerning the
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first question, we have no reason to believe that measurement error is present: Sales prices around
200, 000$ are not unreasonable, and the existence of properties with an area of more than 5, 000
square feet raises no eyebrows either.

However, they do possess unusually large values of predictor area when compared to the other
properties. Combined with the fact that their sales prices are so low, this does seem strange. One
should raise the question: why were they sold so cheaply? We don’t know, but most likely they
have either very high upkeep costs or differ from the other locations in some other respect. In any
case, it is likely that they are structurally different from the rest of the observations and therefore
should not play a major influence. Therefore, we omit them from the following analysis, restricting
our focus of investigation to residential properties whose area is between 1000−4000 square feet.
A modelling strategy which does not involve deleting the outliers is pursued in Section 6.

3 Methodology

3.1 Multiple Linear Regression

In the linear modelling context, the simplest model is undoubtedly linear regression. After having
dealt with the outliers, there is no other problem which would necessitate the use of a more com-
plicated model: The response variable is numerical and there is no multi-level structure present in
the data set. Written in matrix notation, the linear regression model is given by

Y = Xβ + ε with ε ∼ N(0, σ2I), (1)

where Y is a n × 1 vector of response variables, X is the n × p design matrix of explanatory
variables and ε is an error vector coming from a multivariate normal distribution where the error
terms are supposed to be uncorrelated with each other and to have constant variance.

Recall that linear regression can only be carried out in the absence of perfect multicollinearity.
Perfect multicollinearity occurs if any of the predictor variables can be represented as a linear
combination of the other ones. If this is the case, the matrix X is singular and cannot be inverted.
This type of multicollinearity is rarely encountered in real life. However, strongly correlated
predictors also pose a problem insofar as they render the estimates of the regression coefficients β
unstable. Luckily, the variables in X are not multicollinear, with all variables having correlations
of less than 0.5 among each other.

3.2 Model Selection

When fitting a linear model, one first needs to decide upon the set of regressors which should
belong to the model. In Section 2, we already noted that there are interaction effects present, with
the amount of garages varying over time. Thus, we allow all second-order interaction terms to be
present in the model, but prohibit higher-order interactions in order to to prevent overfitting and to
ensure that the final model can be interpreted. We also exclude interactions with the higher-order
terms of year.

Having decided upon the full model, we install an automated backward selection procedure to
assess which terms are not necessary parts of the model and might be dropped. The used procedure
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is based on functionality by Ripley (1996), who in their R package MASS provide an automated
function for stepwise-selection based on AIC as a model comparison criterion.

Since their advent, methods for automatic variable selection have come under scrutiny. Critics ar-
gue that while they can be beneficial, they are often mis-used to the point that the drawn statistical
conclusions become invalid, for example by not accounting for the multiple comparisons carried
out in stepwise procedures.

To prevent such problems from arising, different proposals have been put forward. A thorough dis-
cussion of the associated issues is given by Chateld (1995), who sees potential in resampling tech-
niques as means to deal with aforementioned problems. Harrell (2001) argues strongly in favour
of bootstrapping methods, emphasizing their advantages compared to standard cross-validation
procedures. A recent technique which combines an automated stepwise-selection procedure with
bootstrap resampling has been proposed by Austin and Tu (2004). They argue that one is likely
to arrive at a final model which will include spurious variables if one used automatic selection
procedures in isolation. This in turn would result in inferior prediction performance when the
model was evaluated on independent training data. Using bootstrap resampling then may serve as
a means to separate variables that are independent predictors of the outcome from noise variables
since the former will be selected in a a majority of the bootstrap samples, "whereas noise variables
would be identified as predictors in only a minority of samples" (Austin and Tu, 2004).

Drawing B = 100 times with replacement from our original data set D, 100 bootstrap replicates
D∗

1, . . . ,D∗
100 are created. Backwards selection using AIC as a model comparison criterion is

then carried out for each sample D∗
k and the resulting models are recorded. To carry out the

calculations, we utilize an implementation in statistical programming environment R written by
Rizopoulos (2009).

The returned models then serve as our candidate set from which we need to pick our final model.
Training each candidate model on B = 100 bootstrapped samples D∗

1, . . . ,D∗
100 of original data

setD, we calculate the RMSE of prediction when the fitted model is evaluated on the original data
set, i.e. we calculate

RMSE(b) =

√√√√ 1
n

n∑
i=1

(
Yi − Ŷ (b)

i

)2
where Ŷ (b)

i denotes the i-th fitted value from the model trained on the bth bootstrap sample and
b = 1 . . . B. The final RMSE estimate for a model is then given by

RMSE =
1

B

B∑
b=1

RMSE(b).

From the list of candidate models we then choose the one associated with the lowest RMSE as our
final model. Although this estimate of RMSE will likely be over-optimistic since we have based
our decision-rule on it and optimized it, this does not invalidate the model selection process as
all candidate models will likely benefit similarly from this bias. To get an accurate estimate of
RMSE, it would nonetheless be necessary to evaluate the final model on a "true" validation set.
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4 Results

Implementing the procedure described in the previous section, we have obtained B = 100 can-
didate models which deserve further attention. Tables 1 and 2 disclose information about the
selected models. Table 1 shows for each predictor how often it ended up in the final model cho-
sen by the stepwise-selection procedure, whereas Table 2 displays the proportion of times the
regression coefficients had a negative or positive regression coefficient.

Although these results are encouraging insofar as many predictors have been chosen in all boot-
strap samples as parts of the chosen model, one might wonder why some of them do not have con-
sistent regression coefficients. This fact can be explained by multicollinearity among the predictor
variables. For example, from the main effects area has the least consistent pattern concerning the
sign of its regression coefficient. Looking at the left table, the source of this behaviour becomes
apparent: The interaction terms of area with the other predictors are not very often the same in
the selected models, with some ending up in less than half of the final candidate set. Since these
interactions are highly correlated with area, the estimated coefficients will depend on whether they
are included in the model or not.

(%)

Area 100.00
Fireplaces 100.00

Garage 100.00
I(Year^3) 100.00

Year 100.00
Bath 98.00

I(Year^2) 98.00
Garage:Area 100.00
Garage:Year 96.00

Fireplaces:Year 73.00
Bath:Year 71.00

Garage:Bath 70.00
Fireplaces:Area 63.00

Area:Year 44.00
Bath:Area 43.00

Fireplaces:Bath 19.00
Garage:Fireplaces 16.00

Table 1: For every predic-
tor, this table lists the per-
centage of all B = 100
bootstrap iterations in which
the respective predictor was
chosen by the backward se-
lection procedure.

+ (%) - (%)

I(Year^3) 100.00 0.00
Year 98.00 2.00
Bath 96.94 3.06
Area 25.00 75.00

Fireplaces 20.00 80.00
Garage 0.00 100.00

I(Year^2) 0.00 100.00
Fireplaces:Year 100.00 0.00

Garage:Area 100.00 0.00
Garage:Year 100.00 0.00

Fireplaces:Area 98.41 1.59
Area:Year 79.55 20.45

Fireplaces:Bath 63.16 36.84
Garage:Fireplaces 31.25 68.75

Bath:Year 2.82 97.18
Bath:Area 2.33 97.67

Garage:Bath 1.43 98.57

Table 2: This Table displays
the percentage of times
each predictor had a pos-
itive and negative regres-
sion coefficient. Coeffi-
cients flip sign because of
multicollinearity among pre-
dictors.

Running our bootstrap resampling scheme to obtain an estimate of RMSE for each model in the
candidate set, we end up with the model depicted in Table 3 as our final model. Notice that
this model is mostly comprised of variables deemed important in a large number of the bootstrap
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replicates (all predictors appear in at least 60% of the candidate models), signaling that we did
not pick spurious variables to be part of our model. Most regression coefficients are significant
at the 5% level, and an R2 = 0.662 shows that the model suffices to explain a large amount of
the original variance of the response variable. The enormous value of the intercept might look
troublesome at first glance, however this can be easily reconciled by observing that this negative
value is balanced by predictor year, which has at least a value of 1879, the earliest date in the
data set. In follow-up studies, we would advise to drop the year variable and instead include the
age of the building as a predictor. This conveys the same information, but leads to more naturally
interpretable coefficients.

Estimate Std. Error t value Pr(>|t|)
(Intercept) -1633240.424 425342.632 -3.840 0.000

Garage -961.256 270.944 -3.548 0.000
Fireplaces -498.754 235.332 -2.119 0.035

Bath 399.682 233.269 1.713 0.087
Area -0.029 0.017 -1.669 0.096
Year 2532.510 653.901 3.873 0.000

I(Year^2) -1.308 0.335 -3.905 0.000
I(Year^3) 0.000 0.000 3.935 0.000

Garage:Bath -17.882 5.536 -3.230 0.001
Garage:Area 0.048 0.007 6.549 0.000
Garage:Year 0.471 0.138 3.417 0.001

Fireplaces:Area 0.010 0.007 1.495 0.136
Fireplaces:Year 0.258 0.117 2.197 0.029

Bath:Year -0.194 0.119 -1.626 0.105

Table 3: Regression output of the model chosen by the selection procedure
outlined in Section 3.

A look at Figure 3 reveals that our final model did not stand out too much from the competition,
though. All models chosen by the stepwise selection using AIC provide a reasonably good RMSE,
with their confidence intervals overlapping.
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Figure 3: For a randomly chosen subset of size 20 of the models selected
by backward elimination using AIC, this plot depicts RMSE along with its 95%
confidence interval. For each model, the point estimates for RMSE were es-
timated by averaging across the 100 bootstrap replications. The endpoints
of the associated confidence intervals were chosen as the 2.5- and 97.5-
percentile of the respective empirical distribution of RMSE.

5 Residual Diagnostics

The diagnostic plots displayed in Figure 4 can be used to consider whether the fit of the selected
model is satisfactory or if there were blatant violations of the model assumptions.

The scatterplot of the residuals does not indicate any form of heteroskedasticity, a sign in favor of
the current model specification. The fact that the residuals look constrained to the left-side can be
best explained by the fact that the domain of house prices is restricted by natural circumstances
(e.g. resource prices). Likewise, the plot in the bottom left does not point out any observations
with an unusually large value of Cook’s Distance, suggesting that we have appropriately dealt with
the outliers and do not have major problems with highly influential observations anymore.

Yet, a look at the residual histogram and the associated quantile-quantile plot reveals that the resid-
uals do not follow a normal distribution. Instead, they have a longer-tailed distribution with larger
mass in the right tail than expected. This brings about the question whether this non-normality
poses a threat for drawing valid inference. Ramsey and Schafer (2002) note that non-normality is
usually a minor concern. They point out that the only situation in which it causes problems is a
long-tailed error distribution combined with a small sample size. Also, prediction intervals based
on the normal approximation are no longer viable. The reason that regression coefficients can still
be assumed to follow a normal distribution is given by the central limit theorem (CLT), which
states that the regression coefficients will tend to a normal distribution as n → ∞ regardless of
the underlying distribution of the error terms.

One can verify this by using the bootstrap. We apply the residual bootstrap method to our fitted
model. Here, the fitted values from the original regression are retained, and new bootstrap samples
are created by drawing with replacement from the original residuals and adding the bootstrapped
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Figure 4: Diagnostic plots for the model in Table 3. In the plot on the top-left,
the fitted values Ŷ are plotted against the residuals e = Ŷ − Y . On the top-
right, a histogram of the residuals along with a kernel density line is provided,
whereas the plot on the bottom left shows Cook’s Distance, which is a mea-
sure of the importance of each data point in determining the fitted regression
line. Finally, the plot on the bottom right displays a quantile-quantile plot of
the studentized residuals.

residuals to the fitted values in order to form a bootstrap response. Performing B = 2000 it-
erations, we then get an empirical distribution for all regression coefficients. We then apply the
Shapiro-Wilk test for normality to assess whether they come from a normal distribution. The re-
sults indicate that for all regression coefficients besides garage, normality cannot be rejected at
the 5% significance level.

10



6 Alternative: Resistant Regression

Instead of removing the outliers and fitting a normal linear regression model, one could also use a
resistant regression method since these are not affected by outliers. In contrast to OLS, the least
absolute deviations (LAD) model does not attempt to minimize the sum of squared residuals, but
instead the sum of absolute residuals. So one attempts to solve

min
β

n∑
i=1

|yi − xᵀi β|,

which can be formulated as a linear program and be solved with the simplex algorithm. LAD
regression is a special case of a larger set of models which are known as quantile regression
models. LAD constitutes the special case when the median is estimated. An introduction to the
subject is given by Koenker and Hallock (2001).

Value Std. Error t value Pr(>|t|)
(Intercept) -1575786.298 274658.135 -5.737 0.000

Garage -668.802 151.455 -4.416 0.000
Fireplaces -312.782 120.598 -2.594 0.010

Bath 438.809 134.789 3.256 0.001
Area -0.011 0.010 -1.165 0.245
Year 2440.986 421.885 5.786 0.000

I(Year^2) -1.260 0.216 -5.833 0.000
I(Year^3) 0.000 0.000 5.881 0.000

Garage:Bath -10.261 3.548 -2.892 0.004
Garage:Area 0.031 0.004 8.027 0.000
Garage:Year 0.329 0.077 4.252 0.000

Fireplaces:Area 0.014 0.003 5.538 0.000
Fireplaces:Year 0.157 0.061 2.571 0.010

Bath:Year -0.217 0.069 -3.145 0.002

Table 4: This Table displays the regression output for the model equation
from Table 3 when fitted by the least absolute deviations (LAD) regression
model. In this model, the error terms are not bound to follow a normal distri-
bution with mean zero. It is instead assumed that they have a median of zero.
The regression coefficients are found not by minimizing the residual sum of
squares, but the sum of absolute residual deviations.

The results of fitting this model are displayed in Table 4. Compared to the earlier obtained results
in Table 3, there are some noticeable differences. Which model fares better? Using the same
resampling technique as described in Section 3, we get 41.325 as an estimate for RMSE. This is
worse than most models found by the stepwise procedure, as a look at Figure 3 confirms. However,
it must be noted that this comparison is necessarily unfair: Instead of re-running the model selec-
tion procedure, we used the same set of covariates as before in fitting the LAD model. This puts
the model necessarily at a disadvantage since its final set of regressors was not properly chosen.
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7 Conclusion

In this paper, we used linear modelling to come up with a predictive model for the sales price of
residential property. In performing exploratory data analysis, several outliers were detected. They
were removed from the subsequent calculations. Building upon earlier work by Ripley (1996) and
Austin and Tu (2004), we devised a two-step procedure for model selection. In a first step, a set
of candidate models was assembled by iteratively applying a stepwise selection procedure on a
resampled version of the data set. These candidate models were then ranked according to their
performance according to RMSE when fitted on 100 bootstrap samples of the original data set and
evaluated on the original training set. The model with the best average performance was chosen
as the final model.

As an alternative way to deal with the outliers, a resistant regression model was fitted and the
results of the two models were compared. The resistant regression model performed worse, but
this is owing to the circumstance that we did not properly optimized it using our procedure but
instead fitted the same model formula as before, the reason being that the R functions we relied on
are not able to deal with LAD objects.

This poses an interesting field for new research projects, as automated selection procedures be-
come increasingly important in the wake of "big data". With the ever increasing size of data sets,
data exploration and model assessment become more and more inapplicable. Using resistant and
robust regression techniques whose results do not depend on single observations might help in
these scenarios.
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Appendix

R Code
set.seed(1215) # for reproducibility

# use of knitr (Sweave successor) to create this report
opts_chunk$set(fig.align = "center", cache = TRUE, message = FALSE,

echo = FALSE, eval = TRUE)
options(replace.assign = TRUE, width = 85, digits = 3)

Housing <- read.csv(file = "HousingData.csv")
Housing$SalePrice <- Housing$SalePrice/1000 # recode such that it is measured in 1,000 U.S. Dollars

# remove outliers
Housing.clean <- Housing[-c(343, 438, 443), ]

# no signs of multicollinearity: variables in X are not
# highly correlated (cor<0.5 for all variables) cor(Housing)
# create 3d scatterplot (Figure 1)
require(lattice)
par.set <- list(axis.line = list(col = "transparent"), clip = list(panel = "off"))

cloud(SalePrice ~ Year + Area, data = Housing, groups = Garage,
scales = list(arrows = FALSE), par.settings = par.set, zlab = "Price")

lm.fit <- lm(formula = SalePrice ~ Garage + Fireplaces + Bath +
Area + Year, data = Housing.clean)

lm.fit.full <- lm(formula = SalePrice ~ (Garage + Fireplaces +
Bath + Area + Year)^2 + I(Year^2) + I(Year^3), data = Housing.clean)

fit.quad <- fitted(lm(SalePrice ~ Area + I(Area^2), data = Housing))
fit.quad.clean <- fitted(lm(SalePrice ~ Area + I(Area^2), data = Housing.clean))

p <- ggplot(aes(x = Area, y = SalePrice), data = Housing) + geom_point() +
scale_color_brewer(palette = "Set1") + stat_smooth(method = "lm",
se = FALSE) + geom_line(y = fit.quad, col = "red") + labs(x = "Area (sq ft)",
y = "Price (in 1,000$)")

q <- ggplot(aes(x = Area, y = SalePrice), data = Housing.clean) +
geom_point() + scale_color_brewer(palette = "Set1") + stat_smooth(method = "lm",
se = FALSE) + geom_line(y = fit.quad.clean, col = "red") +
labs(x = "Area (sq ft)", y = "Price (in 1,000$)")

grid.arrange(p, q, ncol = 2)
set.seed(666)
library(bootStepAIC)
stepAIC.res <- boot.stepAIC(lm.fit.full, data = Housing.clean,

direction = "backward")
CandidateModels <- stepAIC.res$BootStepAIC
save(list = c("CandidateModels", "stepAIC.res"), file = "bootResults.RData")
load(file = "bootResults.RData")
print(xtable(stepAIC.res$Covariates), floating = FALSE, hline.after = NULL,

add.to.row = list(pos = list(-1, 0, nrow(stepAIC.res$Covariates)),
command = c("\\toprule\n", "\\midrule\n", "\\bottomrule\n")))

print(xtable(stepAIC.res$Sign), floating = FALSE, hline.after = NULL,
add.to.row = list(pos = list(-1, 0, nrow(stepAIC.res$Sign)),

command = c("\\toprule\n", "\\midrule\n", "\\bottomrule\n")))
# select best via cross-validation
set.seed(13)
my.resamples <- createResample(y = Housing.clean$SalePrice, times = 100)

evaluate.model <- function(fitObj) {
RMSE.list <- lapply(X = my.resamples, FUN = function(x) {

Resampled.Data <- Housing.clean[x, ]
temp.fit <- update(fitObj, data = Resampled.Data)
preds <- predict(object = temp.fit, newdata = Housing.clean)
RMSE <- sqrt(mean((preds - Housing.clean$SalePrice)^2))
RMSE

})
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return(RMSE.list)
}

models.RMSE.vec <- lapply(X = CandidateModels, evaluate.model)
models.RMSE.avg <- unlist(lapply(models.RMSE.vec, function(x) mean(unlist(x))))

final.fit <- CandidateModels[[which.min(models.RMSE.avg)]]
RMSE.sd <- sd(unlist(models.RMSE.vec[[which.min(models.RMSE.avg)]]))
xtable(summary(final.fit), digits = 3, caption = paste0("Regression output of the model chosen by ",

"the selection procedure outlined in Section \\ref{sec:methods}."),
label = "final")

perf <- lapply(models.RMSE.vec, function(x) unlist(x))
perf.df <- data.frame(matrix(unlist(perf), nrow = 100, byrow = F))
perf.df.mean <- colMeans(perf.df)
perf.df.upper <- apply(perf.df, 2, quantile, 0.975)
perf.df.lower <- apply(perf.df, 2, quantile, 0.025)

df3 <- data.frame(mean = perf.df.mean, upper = perf.df.upper,
lower = perf.df.lower, id = 1:100)

# plot a sample of 20 models
df3 <- df3[sample(100, size = 20), ]
df3$id <- as.factor(df3$id)
ggplot(df3, aes(x = id, y = mean)) + geom_errorbar(aes(ymin = lower,

ymax = upper)) + geom_point(aes(x = id, y = mean)) + geom_smooth(aes(x = id,
y = mean)) + labs(x = "ID", y = "RMSE") + coord_flip()

ResidPlot <- function(lm.obj) {
p <- qplot(x = fitted(lm.obj), y = resid(lm.obj), geom = "blank") +

geom_point(alpha = 0.5) + geom_hline(yintercept = 0,
col = "blue") + labs(x = "Fitted Values", y = "Residuals",
title = "Residuals vs. Fitted")

q <- gg_QQplot(lm.obj)

df1 <- data.frame(resid = resid(lm.obj))
r <- ggplot(aes(x = resid, y = ..density..), data = df1) +

geom_histogram(binwidth = 20, col = "grey60") + geom_density(col = "blue") +
labs(title = "Residual Histogram")

cooks <- fortify(lm.obj)$.cooksd
s <- qplot(x = seq_along(fitted(lm.obj)), y = cooks, geom = "blank") +

geom_point(alpha = 0.5) + geom_hline(yintercept = 0,
col = "blue") + labs(x = "Obs. Number", y = "Cook's Distance",
title = "Cook's Distance")

grid.arrange(p, r, s, q)
}
ResidPlot(final.fit)
# bootstrap coefficient distributions
lm.boot <- Boot(final.fit, method = "residual", f = function(obj) coef(obj),

R = 2000)
# normality assumption cannot be rejected for bootstrapped
# coefficients at alpha=0.05 except garage
apply(lm.boot$t, 2, shapiro.test)
# fit the resistant LAD model
final.formula <- formula(final.fit)
lad.fit <- rq(formula = final.formula, tau = 0.5, data = Housing)

# compute RMSE estimate
mean(unlist(evaluate.model(lad.fit)))
xtable(summary(lad.fit, se = "iid")$coef, digits = 3, caption = paste0("This Table displays the regression output for the model equation from Table \\ref{final} ",

" when fitted by the least absolute deviations (LAD) regression model. ",
"In this model, the error terms are not bound to follow a normal distribution with mean zero. ",
"It is instead assumed that they have a median of zero. ",
"The regression coefficients are found not by minimizing the residual sum of squares, ",
"but the sum of absolute residual deviations."), label = "final_lad")
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