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1 Introduction

In machine learning and statistics, Bayesian methods offer an alternative to frequentist procedures
and have proven to be useful in many scenarios in which prior information can be incorporated into
the analysis (e.g. probabilistic expert systems) and domains such as natural language processing
because of the built-in regularization of Bayesian techniques.

However, only recently Bayesian techniques have started to become widely adopted in nonparamet-
ric problems. Since the Bayesian machinery offers a coherent framework to update one’s belief in
face of incoming data, nonparametric models with infinite-dimensional parameter spaces are very
appealing in comparison to parametric models with their fixed size of parameters: Since a Bayesian
nonparametric model will adapt the number of used parameters depending on the observed data
such that the model complexity is allowed to grow as more data comes in. For example, in the
non-parametric version of a Gaussian mixture model, the Dirichlet Process Mixture Model (DPM),
the number of clusters grows as the sample size increases.

In his seminal paper, Ferguson (1973) identifies the problem of devising practical prior distributions
on the parameter space as the main reason why the Bayesian approach has not been as successful in
treating nonparametric problems. According to Ferguson, a nonparametric prior distribution has to
fulfill two goals: First, the support of the prior should be large and second, the posterior distribution
should be tractable analytically. A class of distributions which address both of these opposed goals
were discovered by Ferguson (1973) who called them Dirichlet process priors. Today, Dirichlet
processes are the de facto standard prior for many nonparametric problems involving categorical
variables, whereas Gaussian processes (GP) are often used for continuous variables. The reason
why Dirichlet processes are appealing in categorical problems is that samples from the Dirichlet
process are discrete distributions with probability 1 (Blackwell, 1973).

However, the class of all possible prior processes is much larger than Gaussian processes and Dirich-
let processes, and the interested reader is referred to Phadia (2013) for an exhaustive overview.

In this article, we will exclusively deal with the Dirichlet process and its application in clustering.
Probably the best way to introduce the Dirichlet process is to first cover in depth the Dirichlet
distribution (the finite-dimensional equivalent of the Dirichlet process) as many properties carry
over to the infinite-dimensional case.

1.1 The Dirichlet Distribution

The Dirichlet distribution is very popular in Bayesian statistics in models involving categorical data
due to its conjugacy to the multinomial family of distributions. Recall that a prior distribution is
conjugate to a likelihood function if the posterior distribution given the data lies in the same family
of distributions as the prior.
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The Dirichlet is often described as a distribution over distributions, as draws from a Dirichlet are
distributions over a discrete probability space.

To properly define the Dirichlet distribution, we have to introduce some notation: Let g =
{g1, . . . , gk} be a discrete probability distribution on the space θ = {θ1, . . . , θk} with random
variable Θ defined on θ which takes the value θk with probability P (Θ = θk) = gi. Prior beliefs
about g can be encoded by placing a Dirichlet prior on the distribution g. As a running example,
let us consider the case of a factory which produces loaded six-sided dice - to be sold to people
engaged in fraudulent gambling1. In this case, the sample space is θ =

{
θ1 = 1, . . . , θ6 = 6

}
, i.e.

θi are the labels on the sides of the die. A fair die would have g =
{

1
6 , . . . ,

1
6

}
. The production of a

single die equals a draw from the prior distribution placed on g. Since our factory produces loaded
dice, the probabilities gi of each individual draw will differ from the fair die. This can be encoded
by two parameters in the Dirichlet distribution Dir(α0,α)2, a base distribution α = {α1, . . . , αk}
which gives the mean values for the elements in g (E(gk) = ak) and a concentration parameter α0

which specifies how much each draw from Dir(α0,α) varies around α. In this parametrization, the
density of the Dirichlet distribution can then be written as

P (g;α0,α) =
Γ(α0)∏K
k=1 Γ(ak)

K∏
k=1

ga0ak−1
i . (1)

The Dirichlet distribution satisfies the following important property:
Theorem 1 (Agglomerative Property). If Θ is distributed as Dir (α0,α), then for any partition
B1, . . . , Bm of θ the vector P (B1), P (B2), . . . , P (Bm)) =

(∑
i∈B1

gi, . . . ,
∑
i∈Bm

gi
)

is dis-
tributed as Dir

(
α0,
(∑

i∈B1
ai, . . . ,

∑
i∈Bm

ai
))

. �

The agglomerative property of the Dirichlet shows that combining the atoms of the probability vector
preserves the distributional assumption. In our dice example, we could define B1 =

{
θ1, θ3, θ5

}
and B2 =

{
θ2, θ4, θ6

}
such that B1 stands for all odd numbers and B2 for all even numbers a

die can land on. Then B1 and B2 clearly form a partition of the sample space θ as B1 ∪ B2 = θ
and B1 ∩ B2 = ∅. The vector (P (B1), P (B2)) would then be again Dirichlet distributed with
concentration parameter α0 and base distribution (

∑
i∈B1

ai,
∑
i∈B2

ai). In case that all αi = 1
6 ,

we would thus have
(

1
2 ,

1
2

)
, meaning that on average the produced dice have equal probability of

showing even and odd numbers (recall that we still operate a factory producing loaded dice, such
that each individual draw from g will be a die with unequal probabilities for each side, as drawn
from the Dirichlet).

Taking a different perspective, we can view the α in terms of the non-negative set-function α (A) =∑
i∈A αi over sample space θ. Given this perspective, it is easy to show that α(A) fulfills all

requirements of a measure 3.

This view will be particularly helpful when transitioning to the Dirichlet process. The Dirichlet
distribution in Theorem 1 can hence equivalently be described as Dir (α0, (α (B1) , . . . , α (Bm))).
The following property of the Dirichlet distribution is stated here for future use:
Theorem 2 (Tail Free Property). Let B1, . . . , Bm be a partition of θ. For i = 1, 2, . . . ,m with
α (Bi) > 0, let P (· | Bi) be the conditional probability given Bi defined by

P (θj |Mi) =
P (θj)

P (Mi)
for θj ∈ Bi.

1This scenario is adapted from Tresp (2007). Although the example might look like contrived not to mention
the moral issues at stake, it neatly captures the main points we are going to make.

2 This is a slightly unconventional parametrization we picked up from a highly recommended video lec-
ture on Bayesian nonparametrics by Tresp (2007). The reason for parametrization will become clear when
we outline the connections to the Dirichlet process. Compared to the usual parametrization with parameters
a?1, . . . , a

?
k, we define a0 =

∑k
i=1 a

?
i and ai =

a?i
ao

∀i ∈ {1, . . . , k}.
3Recall that a measure µ is a non-negative set function defined on measurable space (Ω,F) such

that µ (∅) = 0 and for every sequence {Bm}∞m=1 of mutually disjoint elements of F we have
µ (∪∞

m=1Bm) =
∑∞
m=1 µ (Bm) (see Ash and Doléans-Dade (2000)).

2



1.2 Dirichlet-Multinomial Sampling

Previously, we calculated the probability mass function for a single loaded dice as P
(
Θ = θk

)
=

gk. Due to increasing demand for loaded dice, we instead consider the likelihood of a whole sample
Θ1, . . . ,Θn. Let us denote with Nk the number of times a loaded dice lands on side θk. The
likelihood function is then given by

P (Θ1, . . . ,Θn | g) =

K∏
k=1

gNk

k . (2)

Consequently, the posterior distribution of g evaluates to

P (g | Θ1, . . . ,Θn) ∝ P (Θ1, . . . ,Θn | g)P (g|α0,α) (3)

=

K∏
k=1

gα0αk+Nk−1
k , (4)

which we recognize as the kernel of a Dirichlet distribution. Thus,

g | Θ1, . . . ,Θn ∼ Dir

(
α0 + n,

1

α0 + n

(
α0α +

K∑
k=1

Nkδθk

))
, (5)

where δθk is a degenerate distribution centered at θk.

Observe that the base distribution of the posterior is a mixture distribution

α0

α0 + n
α +

K∑
k=1

Nk
α+ n

δθk ,

where with probability α0

α0+n the new observation is drawn from the base distribution α and with
probability proportional to the number of observations Θ1, . . . ,Θn assigned to class k.

This formula for the predictive distribution given a sample Θ1, . . . ,Θn will make a reappearance
in our treatment of the Dirichlet process and might serve as a reminder that the Dirichlet process is
in essence just a generalization of the Dirichlet distribution for infinite-dimensional sample spaces
where the discrete distribution α is replaced by a continuous base measure G0. In the Dirichlet
process setting, the predictive distribution is visualized via the metaphor of customers entering a
Chinese restaurant, the so-called Chinese Restaurant Process (CRP), which is equivalent to to the
Polya Urn scheme, both of which we introduce in the next section.

2 The Dirichlet Process

2.1 Of Polya Urns and the Chinese Restaurant Process (CRP)

Consider the following scenario: We have an urn with α0 balls of which α0/K balls have the color
k, where the color k ∈ {1, . . . ,K} is deterministically linked to θk. We now draw a sample of balls
c1, . . . , cn from the urn according to the following rule: We draw the first ball at random from the
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urn. After drawing each ball, we put the ball itself and an exact copy with the same color back into
the urn. The probabilities at each iteration are

P (c1 = k) =
a0/K

a0
=

1

K

P (c2 = k|c1) =
a0/K + δ(c1 = k)

a0 + 1

...

P (cn = k|c1, . . . , cn−1) =
a0/K +

∑n−1
i=1 δ(ci = k)

a0 + n− 1

(6)

Notice that the probabilities at each iteration equal the predictive distributions obtained from
Dirichlet-multinomial sampling under a Dir(a0, (1/K, . . . , 1/K)) prior. Hence, we could ei-
ther generate c1, . . . , cn according to above procedure or by drawing them from the Dirichlet-
Multinomial. The predictive distribution for cn is equivalent to the predictive distribution for Θn, as
cn = k signals that the n-th observation has label θk.

Let us now see what happens if we take the limit as K →∞ (Neal, 2000). We get

P (cn = k|c1, . . . , cn−1) =
mk

a0 + n− 1
, (7)

where mk =
∑n−1
i=1 δ(ci = k) is the number of balls from type k drawn till iteration n and

P (cn 6= cj ∀j < n) =
a0

a0 + n− 1
. (8)

The case when K → ∞ corresponds to the so-called Chinese Restaurant Process (CRP). The
metaphor for the CRP works as follows: Imagine a Chinese restaurant with an infinite number of
tables. Customers enter the restaurant and either start a new table or sit down at an already occupied
table. At each iteration, they start a new table with probability (8) or sit down at an already occupied
table with probability (7). If a new table is started, the customer orders a dish from the menu θ,
where in contrast to the Dirichlet distribution with its discrete base measure α we now draw it from
a continuous base measure G0 as the space θ is now assumed to be infinite-dimensional, i.e. there
is an infinite number of dishes available on the menu. One possible explanation why the metaphor

Figure 1: Visualization of the CRP. In this example, five customers Θi have entered the restaurant
and three tables are occupied in total. The dishes ordered at each table are θ1, θ2 and θ3, which are
shared by all customers sitting at the same table. Right now, guest 1, 3 and 5 all share the same dish
θ1.

is about a Chinese restaurant is this: Not every guest orders his or her dish individually, but a single
order is placed for each table such that all guests sitting together at table share a dish among each
other. Such sharing of dishes is common in Chinese cuisine, where often several dishes are ordered
at once and then shared among all guests of a dinner.
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Given this specification, the predictive distribution for Θn+1 given all previous observations can be
written as

Θn+1 | Θ1, . . . ,Θn ∼
1

a0 + n

(
a0G0 +

K∑
k=1

Nkδθk

)
,

where δθk is a point-mass centered at θk and K denotes the number of occupied tables when the
n + 1-th customer enters the restaurant. Observe that this mixture distribution exactly corresponds
to the CRP: When a new customer comes in, he either starts a new table and orders a new dish from
base distribution G0 with probability proportional to α0 or he sits down at an already occupied table
with probability proportional to the number of people already eating at that table (Nk) and eats from
the same dish θk as everyone else sitting at that table. Notice the similarity between the predictive
distributions of the Dirichlet process and distribution (see section 1.2).

The joint probability of drawing a sample of balls from the urn can be factored according to the
chain rule as follows:

P (c1, . . . , cn) = P (c1)P (c2 | c1) · · ·P (cn | c1, . . . , cn−1).

Using the results in Equations (7) and (8), it can be shown (Gershman and Blei, 2012, p.6) that the
joint probability can also be written as

P (c1, . . . , cn) =
αK0
∏K
k=1(Nk − 1)!∏n

i=1(i− 1 + α0)
,

where Nk is the number of balls with label k after n draws. The important thing to notice is that
this probability does not depend on the order in which the balls for each type were drawn! Hence,
random samples generated according the Polya urn scheme are exchangeable, which means that
for any permutation of the indices 1, 2, . . . , n − 1 the joint probability distribution of the permuted
sequence is the same as that of the original sequence.

An important result from probability theory, De Finetti’s representation theorem, states informally
that for any (infinite) exchangeable sequence, there exists a latent variable drawn from some under-
lying measure which renders all variables in the sequence independent. A precise formulation of the
theorem given by Schervish (1997) is:
Theorem 3 (De Finetti’s representation theorem). Let (S,A, µ) be a probability space, and let
(R,B) be a Borel space. For each n, let Xn : S 7→ R be measurable. The sequence (Xn)

∞
n=1 is

exchangeable if and only if there is a random probability measure P on (R,B) such that, conditional
on P , {Xn}∞n=1 are iid with distribution P . Furthermore, if the sequence is exchangeable, then the
distribution of P is unique, and Pn(B) converges to P (B) almost surely for each B ∈ B. �

For the CRP, this underlying measure P is the Dirichlet process. That is, we can generate a sequence
of random variables Θ1, . . . ,Θn either by using the CRP or by drawing

1. Draw G ∼ DP(G0, α0), a random variable drawn from a Dirichlet process with base
distribution G0 and concentration parameter α0

2. Draw Θ1, . . . ,Θn | G
iid∼ G.

With a method to generate samples from a Dirichlet process at our disposal, we will now examine
the properties of the Dirichlet process and its applications in the next sections.

2.2 Key Results

Recall that in contrast to the case of a Dirichlet distribution defined over a finite space θ =
{θ1, . . . , θk} specifying different categories, the Dirichlet process is defined over an infinite-
dimensional space, which we denote by Ω. Let F be an associated σ-algebra of events of that space
such that together (Ω,F) form a measurable space. This formulation gives rise to the following
definition of the Dirichlet process:
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Definition 4 (Definition of Dirichlet Process). Let G0 be a non-null finite measure on (Ω,F).
We say G is a Dirichlet process on (Ω,F) if for every i = 1, . . . , k and measurable partition
(B1, . . . , Bk) of F , the distribution of (G(B1), . . . , G(Bk)) is Dirichlet:

(G(B1), . . . , G(Bk)) ∼ Dir (α0G0(B1), . . . , α0G0 (Bk)) (9)

The existence of the Dirichlet process was first proven in Ferguson (1973). It is sketched in section 3,
as are all results presented in this part of the report. The following properties can be derived for the
Dirichlet process:
Theorem 5 (Properties of Dirichlet Process). Let G be distributed according to the Dirichlet pro-
cess. Let A ∈ F be any measurable set. Then

1. E [G(A)] = G0(A).

2. Var [G(A)] = G0(A)(1−G0(Ac))
α0+1 �

Observe that as α0 → ∞, the variance of the Dirichlet process goes to zero: A draw from the
Dirichlet will be much more concentrated around G0. For very large α0, drawing a sample from G
will, loosely speaking, be the same as just drawing from the base measure G0 in the first place.

One other noteworthy result is that the conditional distribution of G given a sample is again a
Dirichlet process. This property makes the Dirichlet process particularly attractive as an element
for Bayesian nonparametrics, as it allows repeatedly updating the beliefs about G in face of incom-
ing data.
Theorem 6 (Posterior Distribution). Suppose G ∼ DP (G0, α0) and Θi | G ∼ G for all i ∈
{1, . . . , n}. Then the posterior distribution of G is given by

G | Θ1, . . . ,Θn ∼ DP

(
1

α0 + n

(
α0G0 +

K∑
k=1

Nkδθk

)
, α0 + n

)
. (10)

As already noted in the introduction, the DP is very useful for clustering problems because samples
drawn from it are discrete distributions. Precisely:
Theorem 7 (Discreteness of Samples from Dirichlet Process). If P ∼ DP (α0, G0), then every
realization P is a discrete probability measure on (Ω,F) with probability 1. �

3 Proof Outlines of Results

Existence of Dirichlet process. The existence of the probability measure defined in definition 4 can
be verified using the following theorem:
Theorem 8 (Kolmogorov’s Extension theorem). For each t in arbitrary index set T , let Ωt = R
and Ft be the Borel sets of R. Assume that for each nonempty set v of t, we are given a probability
measure Pv on Fv . If the Pv are consistent, i.e.

πu (Pv) = Pu for each nonempty u ⊂ v,

where πu (Pv) = Pv (x ∈ Ωv : xu ∈ B for B ∈ Fu), then there exists a unique probability measure
P defined on the product space

(∏
t∈T Ωt,⊗t∈TFt

)
such that πv (P ) = Pv for all v. �

The consistency requirement for the existence of P follows from the tail-free property of the Dirich-
let distribution of theorem 2.

Proof of theorem 5. (1): Consider any partition {B,Bc} of Ω. By the definition of the Dirichlet
process, we have

(G(B), G(Bc)) ∼ Beta (α0G0(B), α0G0(Bc)) .

with mean E [G(B)] = α0G(B)
α0G(B)+α0G(Bc) = G0(B)

G0(Ω) = G0(B). Likewise, (2) follows because of the
variance formula for the Beta distribution4.

4Recall that a Beta (α, β) random variable has mean α
α+β

and variance αβ
(α+β)2(α+β+1)

.

6



Proof of theorem 6. Consider an arbitrary measurable partition A1, . . . , Ak of sample space Ω (i.e.
Ai ∩ Aj = ∅ for i 6= j and ∪ki=1Ai = Ω). From the definition of the Dirichlet process, we know
that

X = (G(A1), . . . , G(Ak)) ∼ Dir (α0G0 (A1) , . . . , α0G0 (Ak)) . (11)
In addition,

Y ∼ Mutinomial (X) . (12)
By the conjugacy of the Dirichlet to the Multinomial, it follows that the posterior distribution of X
is

X | Y ∼ Dir

(
α0G0 (A1) +

n∑
i=1

δθi (A1) , . . . , α0G0 (Ak) +

n∑
i=1

δθi (Ak)

)

Since this holds for all partitions, we can conclude that the posterior of G is again a Dirichlet
process according to the Kolmogorov extension theorem. Normalizing by multiplying and dividing
each coefficient of the Dirichlet with α0 + n allows us to read off the values for the concentration
parameter α′0 and the base distribution G′0 for the Dirichlet process as

α′0 = α0 + n

G′0 =
1

α0 + n

(
α0G0 +

K∑
k=1

Nkδθk

)
.

Proof of theorem 7. The following sketch of a proof, originally due to Basu and Tiwari (1982), is
taken from Ghosh and Ramamoorthi (2003), adapted to the notation of this paper. Another proof is
given in Blackwell (1973) and the seminal paper by Ferguson (1973).
Consider the pair (P,X) of random quantities with P ∼ DP (α0, G0) and X | P ∼ P , that
is conditional on P the distribution of X is P . Denote their joint distribution as Q and let
Ẽ = {(P, x) : P {x} > 0}. Define the x-section of E as Ẽx = {P : P {x} > 0} and the P -
section as ẼP = {x : P (x) > 0}. Under distribution DP (α0 + 1, G0 + δx), the random vari-
able P {x} is positive with probability one as the G0 + δx measure of the set {x} is positive.
Since P {x} ∼ Beta (α0G0 ({x}) , α0G0 (Ω \ {x})) and G0 ({x}) > 0, we can conclude that
P ({x}) > 0 with probability one. Thus

Q(E) = EQ

(
Q
(
Ẽ
)
| P
)

= EQ

(
P
(
ẼP

))
= 1.

From this, it follows that P
(
ẼP

)
= 1 almost surely.

4 Conclusion

In this report, we have given a summary of the Dirichlet process, a prior process which can serve
as a building-block in many Bayesian nonparametric problems. Developed by Ferguson (1973)
in his seminal paper, the Dirichlet process is only one of many prior processes used in Bayesian
nonparametrics. Ferguson (1974) identifies two desirable properties for such priors: (1) the support
of the prior on the space of probability measures should be large and (2) the posterior distribution
given a sample should be analytically tractable. Both these issues are addressed by the Dirichlet
process, with its posterior being again Dirichlet distributed as demonstrated in theorem 6.

We hope that by stressing the similarities of the Dirichlet process to its finite-dimensional counter-
part, multinomial sampling with a Dirichlet prior, we have given a comparatively easy introduction
to this intruiging but also unintuitive and complex subject matter.

Because of the discreteness of samples drawn from a Dirichlet process (recall theorem 7), it is most
widely used as a prior in classification or clustering problems. They have been successfuly used
in mixture models for clustering, going back to Antoniak (1974). A hierarchical version of the
DP has been developed by Teh et al. (2005) to allow for sharing of statistical strength by linking
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grouped observations together and used in topic modeling and extert systems, for which sharing of
information across groups is usually necessary. However, it has been noted that the Dirichlet process
might not be ideal in all of these use cases, and various other processes have been proposed in order
to deal with the perceived deficiencies (see Teh and Jordan (2010)).

In order to understand the various existing prior processes better, future research should investi-
gate their relationships and provide guidance for the practitioner by describing their properties and
assessing their strengths and weaknesses when used in various contexts.
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