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1 Introduction

Most living caribou reside in North America, where they have a total population of 3.5
million (Britannica, 2006). Both male and female caribou grow antlers, and frequently
compete in sparring activities in order to establish a dominance hierarchy among their
flock. The fighting patterns of Caribou have attracted some scientific interest, with studies
conducted on how and by whom fights are initiated (Barrette and Vandal, 1990).

The present analysis fills a gap insofar as it uses statistical modelling techniques to de-
velop a ranking scheme which orders the fighting abilities of individual caribou and al-
lows to assess the influence of personal traits on fighting skills. We use a data set which
contains information about 823 aggressive interactions among 20 caribou, where for each
caribou its age and gender have been recorded as explanatory variables.

The paper is structured as follows: At the beginning, data exploration is undertaken and
the symmetry of the matrix of encounters is assessed. In Section 3, a simple Bradley-
Terry model is presented as a means to model the contests between the caribou. Section
4 presents the results. Next, the model is adapted in Section 5 to incorporate caribou-
specific information. Finally, Section 6 comments on the findings and provides an outlook
for further research.

2 Data Exploration

The recorded fighting encounters of caribou are depicted in Figure 1. The number of fights
between caribou range from 0 to 22, with most caribou fighting at least once with each
other: Of all possible one-on-one duels (

(
20
2

)
= 190), there are only 12 combinations

which did not take place. An initial look at Figure 1 might suggest otherwise, though:
There appear to be many blank spots without circles. However, this only means that
many caribou did not win against a specific opponent, not that no fight between the two
of them took place. Having this in mind and observing that there are some caribou with a
huge number of won fights on their record while others have almost none (like caribous 2,
7 and 19), there seems to be considerable variation in fighting skills among the considered
group of caribou.

Recall that we have two goals in mind: First, we want to order the caribou with respect
to their fighting abilities. Albeit it is quite easy to order the caribou depending on the
percentage of won fights, this ordering is potentially deceptive: Although a lot of wins
are generally associated with a higher ability, one has to take the quality of the respective
opponents into account. This analysis is best undertaken using a statistical modelling
approach, and is hence deferred to Section 3. Second, we want to relate fighting ability to
the two explanatory variables age and gender.

In Figure 2, the number of won battles is displayed conditional on age. One not surprising
observation is that the younger caribou either do not engage in many fights or often lose.
In the following analysis, it will be shown that the latter is true, with winning percentages
among the younger ones often below 20%.
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Figure 1: Balloon plot of the encounters of the 20 monitored caribou.
For the i-th caribou, the values in the i-th row show the number of
won fights against opponent j, where j denotes the column index. As
an example, caribou 11 won 22 times against caribou 14, which is the
highest number of lost battles any caribou had to endure against a
single opponent.

The color of the bars in Figure 2 denotes the gender of the respective caribou, which again
reveals a few interesting patterns. For example, it is interesting to observe that the data set
does not contain any male caribou with an age of four or older: There is not a single blue
box for that group. This reflects the life expectancy of caribou, which is about four years
for male and around 10 years for female caribou. Given this background information, it
is no mystery anymore that female caribou end up winning many fights when aged four
or more: They just hit the phase in life where they are at the zenith of their abilities.

To investigate these relationships further and to sort the caribou depending on fighting
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skills, we now turn to statistical modelling. However, we first check whether the matrix
of encounters in Figure 1 satisfies the symmetry property, which would lead to a very
simple generalized linear model.

Following the definition Agresti (1990) for square contingency tables, a sufficient condi-
tion for symmetry is that

πij = πji ∀i 6= j,

where {πij} denotes the I×I joint distribution of outcomes πij , which in our case denotes
the probability of the i-th caribou to defeat the j-th one when engaged in a violent interac-
tion. What would be the consequence if symmetry was satisfied in the present case? The
answer is simple: it would mean that between any two caribou i and j, their respective
chances of winning were equal. This does not seem to be a reasonable assumption for
the present data set, as the graph in Figure 1 clearly shows that some caribou are much
stronger than others.

However, to formally test for symmetry requires some care, and some of the usually ap-
plied methods don’t work due to the sparseness of the matrix of encounters. For example,
Bowker (1948) proposes the following test statistic:

∑∑
i>j

(nij − nji)
2

nij + nji

, (1)

in which nij marks the observed cell counts. For tables with dimension I = 2, this
simplifies to McNemar’s test (McNemar, 1947). Bowker (1948) showed that under the
null hypothesis of symmetry, this test statistic follows a chi-squared distribution with
I(I − 1)/2 degrees of freedom. A significant result implies that the marginal frequencies
are not homogeneous and therefrom that the table does not possess the symmetry property.

However, the approximation to the chi-squared distribution is doubtful for small frequen-
cies and furthermore Equation (1) is undefined for the matrix of caribou encounters since
nij + nji = 0 in many instances. There are some crude approximations to deal with these
issues, including adding small values to each cell count and correcting for degrees of
freedom, see Agresti (1990).

Looking at the problem from a different perspective, it can be seen that symmetry can be
expressed as a log-linear model provided that πij > 0 for all i, j (Agresti, 1990). For the
expected frequencies µij = nπij , this log-linear model has the form

log µij = λ+ λi + λj + λij,

where all λij = λji. To ensure identifiability, constraints need to be placed on the param-
eter values. Agresti (1990) shows that a simpler expression is then given by

log µij = λij with λij = λji. (2)
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Figure 2: Bar plots of the number of won fights depending on age and
gender. Individual bars for every caribou are stacked on each other,
with the labels on top of every bar disclosing their id.
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This observation enables us to the test the assumption of symmetry as follows: We fit the
model in Equation (2) on the observed cell counts. The residual deviance of this model
compares it to the saturated model, in which the constraint λij = λji is lifted and exactly
one parameter is fitted for each observation. It can be shown that the residual deviance
satisfies

D (P ) = 2 [l (saturated)− l (P )] ∼ χI×(I−1)−p

under H0, where p is the number of different regression coefficients λ. Carrying out the
model fitting process using maximum likelihood estimation, we obtain a residual deviance
of 1008 under 190 degrees of freedom. This signals a very bad fit, and the associated p-
value of 0 provides overwhelming evidence against the null hypothesis that the fit of our
model is satisfactory. But recall that the fitted model directly followed from the symmetry
property, which therefore must likewise be given up.

This is not a huge sacrifice, though. The use cases of the symmetry model are fairly
limited (Agresti, 1990). Instead, a more commonly used assumption is that of quasi-
symmetry, which proclaims that the following relationship holds (Caussinus, 1966):

πijπjkπki = πjiπkjπik ∀i, j, k

This assumption, which does not lend itself to any immediate intuition, provides the
ground for the Bradley-Terry model. As Agresti (1990) notes, Fienberg and Larntz (1976)
show that the Bradley-Terry model is a logit formulation for the quasi-symmetry model.
In the following, we employ the Bradley-Terry model to investigate the fighting abilities
of the caribou.

3 Bradley-Terry Model

The model which was developed by Bradley and Terry (1952) postulates the following
form for the log-odds of winning for player i:

logit (Pr [i beats j]) = λi − λj, (3)

where we interpret the coefficients λ as representing the ability of the respective players.
This interpretation is sensible due to the following reasoning: First notice that Equation
(3) is equivalent to

Pr [i beats j]
Pr [j beats i]

=
exp (λi)

exp (λj)
. (4)

Since the exponential is a monotonic function, λi > λj always implies that player i has
higher chances of winning compared to player j and vice verse. In light of this, it makes
sense to interpret λ or exp(λ) as measures of the ability of the players.

To fit the model depicted in Equation (3), we use statistical programming environment R,
in particular the BradleyTerry2 package (Firth, 2005).
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4 Results

Parameter estimates for λ are displayed in Table 1. Estimation is carried out by maximum
likelihood. Notice that the model in Equation 3 is overidentified and can only be fitted
after certain restrictions have been placed on the coefficients. In this case, we have chosen
caribou 7, the player with the lowest winning rate, to serve as the baseline category,
constraining its coefficient to zero.

In the table, the caribou are ordered with respect to their estimated λs. To facilitate com-
parison with the empirical winning percentages, these are also displayed. As one can see,
there is in general a large agreement between the two: A caribou with a high percentage of
won fights is also very likely to have a large estimated ability coefficient. However, there
are some exceptions: Caribou 3 has a very low winning rate but at the same time exhibits
the 7-th highest λ coefficient. How can that be? A look at Figure 1 proves once again to
be informative: Looking at the 8-th column, we can see that caribou 3 lost most battles
against caribou with very high abilities: caribou 17, 18 and 8 all have very high ability
estimates. The Bradley-Terry model behind these estimates fits the data adequately, as a
residual deviance of 203.81 on 159 degrees of freedom signals.

ID Win % λi S.D.
13 0.93 16.50 1.89
18 0.85 15.63 1.87
8 0.84 15.01 1.85

17 0.84 14.58 1.84
11 0.70 13.50 1.83
5 0.71 12.36 1.82
3 0.52 12.27 1.85

20 0.63 11.31 1.81
1 0.43 9.38 1.75

14 0.35 9.11 1.73
4 0.38 9.04 1.73

10 0.18 8.13 1.78
12 0.25 8.08 1.76
6 0.23 7.69 1.73

15 0.24 7.05 1.71
2 0.11 6.15 1.79

16 0.16 4.91 1.60
9 0.15 3.55 1.29

19 0.12 1.43 0.79
7 0.06 0.00 0.00

Table 1: Table of winning percentages for each caribou and results of
fitting the Bradley-Terry model without covariates

From the results of Table 1, one can now predict outcomes of fights between the combat-
ants. To give an example, let us calculate the probability that caribou 13 defeats caribou 18
to get a sense about how much the first and second placed caribou differ in their abilities.
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Figure 3: Estimated relative fighting skills of caribou

The result is

Pr (13 beats 18) =
exp (16.50)

exp (16.50) + exp (15.63)
≈ 0.7,

meaning that we can make a fairly strong statement that caribou 13 will win provided that
our model holds.

To test whether the abilities of any two caribou are equal, one can calculate the difference
λi − λj and test whether it is equal to zero. Doing this inference step requires full access
to the covariance matrix of the coefficients since we have

V ar (λi − λj) = V ar (λi) + V ar (λj)− 2× Cov (λi, λj)

from basic probability theory. Since this can get cumbersome, Firth (2004) developed the
concept of quasi-variances, which allows for easier calculation as well as direct compar-
isons between any two players without the need to resort to a baseline category. Estimated
comparison intervals are displayed in Figure 3.

Based on quasi standard errors, it is now easy to infer whether say the third caribou
and the fifth differ from each other with respect to ability, i.e. we want to test whether
λ5 − λ3 = 0. Their quasi-standard errors are 0.49 and 0.56, respectively. By using the
familiar Pythagorean theorem, one can then calculate the standard error of λ5−λ3 = 0 as
(0.492 + 0.562)1/2 = 0.74. The test statistic can be calculated as (12.36− 12.27)/0.74 =
0.12, which corresponds to a p-value of 0.9 for the two-tailed test assuming a normal dis-
tribution of the test statistics. This provides strong evidence in favour of the null hypoth-
esis that the two caribou have the same abilities, which we cannot reject at a significance
level of α = 0.05.

8



Table 2: Output for the regression model of λi on the explanatory vari-
ables age and gender.

lambda

Age[1,2) 7.136∗∗∗

(1.934)

Age[2,3) 8.050∗∗∗

(1.997)

Age[3,4) 7.918∗∗

(3.411)

Age>=4 11.310∗∗∗

(2.242)

SexMale 3.750∗∗

(1.579)

Constant 0.597
(1.681)

Observations 20
R2 0.702
Adjusted R2 0.595
Residual Std. Error 2.968 (df = 14)
F Statistic 6.588∗∗∗ (df = 5; 14)

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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Returning to the earlier posed question of how ability is related to age and gender, we
propose to run a regression of the estimated λi with these as covariates. Specifically, we
assume the usual fixed-effects model in standard linear regression:

λ = Xβ + ε, ε ∼ N
(
0, σ2In

)
,

where the error terms follow an 20-dimensional multivariate normal with mean zero and
uncorrelated error terms with constant variance. The results from that regression are
depicted in Table 2. As can be seen, the model is clearly significant (F statistic equals
6.588). The high R2 signals that the considered variables account for 70% of the variance
in λ. All regression coefficients are significant at the 5% level. Since age has different
levels, (joint) significance testing was conducted with ANOVA (p-value almost zero).

To interpret the regression coefficients, notice for example that being a male caribou is
associated with a multiplicative effect of exp(3.750) = 42.52 on the odds of winning
compared to being female, as can be seen from Equation (4).

5 Extension

As an alternative, one can also directly incorporate the covariates into the Bradley-Terry
model. This leads to a mixed-effects model, in which both age and gender enter as fixed
effects and random effects are included for each caribou. That is, one assumes that for
each λ, the following relationship holds:

λi = xᵀi β + Ui.

Inserting this into Equation (3) yields

logit (Pr [i beats j]) = xᵀi β + Ui − xᵀjβ − Uj, (5)

where Ui,j ∼ N (0, σ2). Fitting this models gives the parameter estimates in Table 3,
which are very similar to those earlier obtained. Using random-effects for the caribou
has the advantage that inference for caribou outside of the sample population is eased,
whereas the previously employed technique of including indicator variables for each cari-
bou necessarily limits the scope of the analysis to the sample at hand.

Table 3: Fixed-Effects of the model in Equation (5).

age[1,2) age[2,3) age[3,4) age>=4 sexMale

Fixed Effects 6.699 7.558 7.342 10.550 3.456
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6 Conclusion

Using exploratory analysis and statistical modelling via the Bradley-Terry model, we have
analyzed the fighting hierarchies among a group of 20 traced caribou. We found ample
evidence of different fighting abilities among the caribou, where being male and older
was found to increase the odds of winning a fight.

Further research should be conducted about the fighting patterns among caribou, as the
gained information might provide wider insights into the social structure and behaviour
of wildlife caribou. More information should be collected about the individual caribou, as
this could significantly improve the fit of the considered methods. Also, spatial statistics
could be used to model the roaming behaviour of the caribou and their encounters among
each other.
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Appendix

R Code
set.seed(1215) # for reproducibility

# use of knitr (Sweave successor) to create this
# report
opts_chunk$set(fig.align = "center", cache = FALSE,

message = FALSE, echo = FALSE, eval = TRUE)
options(replace.assign = TRUE, width = 85)

Encounters <- read.table(file = "Table2.txt")

Caribou <- data.frame(id = 1:20, Sex = factor(x = c(0,
0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0,
1, 0, 0), labels = c("Female", "Male")), Age = c(5,
3, 4, 2, 5, 2, 1, 2, 1, 3, 2, 3, 3, 2, 2, 1, 5,
3, 1, 5))

Caribou$Age <- factor(Caribou$Age, labels = c("<1",
"[1,2)", "[2,3)", "[3,4)", ">=4"))

# symmetry check

x <- numeric()

bowker.test <- function(x) {
cs <- 0
for (j in 1:20) {

for (i in (j + 1):21) {
if (i == 21)

return(cs) else {
if (x[i, j] + x[j, i] == 0)

cs <- cs + 0 else cs <- cs + (x[i, j] - x[j, i])^2/(x[i,
j] + x[j, i])

}
}

}
}
# data preparation
pairwise <- combn(20, 2)

player1 <- pairwise[1, ]
player2 <- pairwise[2, ]

win1 <- vector()
win2 <- vector()

for (i in 1:length(player1)) {
win1 <- c(win1, Encounters[player1[i], player2[i]])
win2 <- c(win2, Encounters[player2[i], player1[i]])

}

player1 <- factor(player1, levels = 1:20)
player2 <- factor(player2, levels = 1:20)

caribou.bt <- data.frame(player1 = player1, player2 = player2,
win1 = win1, win2 = win2)

# no of encounters which did not happen
no.without.fights <- sum(rowSums(cbind(win1, win2)) ==

0)

# due to sparseness, chi-squared approximation in
# bowker test is not valid -> apply custom
# procedure:
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caribou.symmetry <- melt(caribou.bt, id.vars = c("player1",
"player2"))

caribou.symmetry$lambda <- factor(c(1:190, 1:190))
caribou.symmetry$lambda2 <- factor(1:380)

pois.fit1 <- glm(formula = value ~ lambda, data = caribou.symmetry,
family = poisson)

# large residual deviance confirms that model is
# not adequate, with p-value of zero

pvalue <- 1 - pchisq(q = pois.fit1$deviance, df = pois.fit1$df.residual)

### Bradley-Terry model

BT.fit <- BTm(outcome = cbind(win1, win2), formula = ~player,
id = "player", player1 = player1, player2 = player2,
data = caribou.bt, refcat = "7")

player1.df <- data.frame(player = player1, age = Caribou$Age[player1],
sex = Caribou$Sex[player1])

player2.df <- data.frame(player = player2, age = Caribou$Age[player2],
sex = Caribou$Sex[player2])

caribou.bt.cov <- data.frame(win1 = win1, win2 = win2)
caribou.bt.cov$player1 <- player1.df
caribou.bt.cov$player2 <- player2.df

# fit extended bradley-terry model from equation
# (5)

BT.fit.cov <- BTm(outcome = cbind(win1, win2), formula = ~age +
sex + (1 | player), id = "player", player1 = player1.df,
player2 = player2.df, data = caribou.bt.cov, x = TRUE)

# plot of Caribou Encounters (Figure 1)
rownames(Encounters) <- paste0(1:20)
colnames(Encounters) <- paste0(1:20)

encs <- as.matrix(Encounters)
names(dimnames(encs)) <- c("row", "column")
df1 <- melt(encs, value.name = "count")
df1$row <- factor(df1$row, levels = paste0(20:1))
df1$column <- factor(df1$column, levels = paste0(1:20))

p <- ggplot(aes(x = column, y = row), data = df1) +
geom_point(aes(size = count), shape = 21, colour = "black",

fill = "cornsilk") + scale_size_area(max_size = 8,
guide = FALSE)

p <- p + geom_text(data = subset(df1, df1$count > 0),
aes(y = as.numeric(row) - sqrt(count)/8, label = count),
vjust = 1, color = "black", size = 2.5)

p <- p + labs(x = "", y = "", title = "Caribou Encounters") +
theme(text = element_text(size = 10))

p
# produces Figure 2
won.encs <- apply(Encounters, 1, sum)
Caribou$Wins <- won.encs
df.barplot <- arrange(Caribou, Age, Wins)
df.barplot <- ddply(df.barplot, "Age", transform, label_y = cumsum(Wins))
df.barplot$id <- as.character(df.barplot$id)
ggplot(aes(x = Age, y = Wins), data = df.barplot) +

geom_bar(stat = "identity", aes(fill = Sex), color = "black") +
labs(y = "# of wins") + geom_text(aes(x = Age,
y = label_y, label = id), vjust = -0.2) + scale_fill_brewer(palette = "Pastel1")
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# calculate values for Table 1
coefs <- rbind(summary(BT.fit)$coefficients[1:6, 1:2],

c(0, 0), summary(BT.fit)$coefficients[7:19, 1:2])

WinPercentage <- lapply(1:20, FUN = function(x) {
sum(Encounters[x, ])/(sum(Encounters[x, ]) + sum(Encounters[,

x]))
})

coefs.df <- data.frame(id = 1:20, WinPercentage = unlist(WinPercentage))
coefs.df$beta <- coefs[, 1]
coefs.df$sd <- coefs[, 2]
coefs.df <- coefs.df[order(coefs.df$beta, decreasing = TRUE),

]
colnames(coefs.df) <- c("ID", "Winning Percentage",

"$9+3$", "S.D.")

my.xtable <- xtable(coefs.df, digits = 2, caption = paste0("Table of winning percentages for each caribou ",
"and results of fitting the Bradley-Terry model without covariates"),
label = "tab:brad1", align = "c|c|l|ll|")

print(my.xtable, include.rownames = FALSE, include.colnames = FALSE,
add.to.row = list(pos = list(0), command = "ID & Win \\% & $\\lambda_i $ & S.D. \\\\ "))

# calculate quasi-standard errors and plot them
caribou.qv <- qvcalc(BTabilities(BT.fit))
plot(caribou.qv)
# produce regression output in Table 2
Caribou$lambda <- coefs[, 1]
stargazer(lm(lambda ~ Age + Sex, data = Caribou), style = "aer",

title = "Output for the regression model of $\\lambda_i$ on the explanatory variables \\emph{age} and \\emph{gender}.",
label = "tab:stargazer")

# fixed effects of model from Equation (5)
fixed.effs <- BT.fit.cov$coefficients[1:5]
fixed.effs <- as.data.frame(t(fixed.effs))
rownames(fixed.effs) <- "Fixed Effects"
stargazer(fixed.effs, summary = FALSE, title = "Fixed-Effects of the model in Equation (\\ref{eq:mixed}).",

style = "aer", label = "tab:mixed")
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